An Integrated Interface Tool for the Architecture for Agile Assembly

Jay Gowdy and Zack J. Butler

The Robotics Institute
Carnegie Mellon University

Abstract

Developing automated assembly systems normally hap-
pens in two distinct stages: first an “off-line” stage in
which the system is designed and programmed in sim-
ulated and then an “on-line” stage in which the sim-
ulation results are used to minimize the deployment
and integration time of the physical machines. The
distinction is so great that usually completely differ-
ent software environments are used in the design phase
than are used in the deployment and operation phase.
We are developing The Architecture for Agile Assembly
(AAA): a comprehensive, integrated framework that is
designed to blur these stages together and ease the tran-
sitions between them. We have used the protocols of
AAA to create an integrated interface tool which can be
used throughout the life-cycle of a developing AAA fac-
tory, from its design to its operation. We have tested
the integrated interface tool both in simulation and with
our prototype hardware, which is designed for high pre-
ciston four-degree-of-freedom assembly.

1 Introduction

Off-line robot programming promises to reduce the
time necessary to produce automated assembly sys-
tems, since much of the design and programming
work can be done in simulation, where experimenta-
tion is usually cheap and mistakes are generally not
catastrophic[5, 9, 13]. Unfortunately, a problem inher-
ent in off-line programming is evident in its name: for
an “off-line” program to be truly useful, it must be-
come an “on-line” program running on a physical as-
sembly system. If the physical factory does not match
the simulated factory to a sufficient degree in either
geometric or functional characteristics, then the tran-
sition from the world of pixels and bits to the world of
actuators and metal can be arduous.

This difficult transition has long been recognized as
a problem with off-line programming.[3] Approaches
to easing the transition include

e Calibration: sensing the factory configuration and
adapting the programs to match[§].

e High fidelity modeling: using standardized mod-
els of components and component assembly con-

Figure 1: A minifactory segment

straints combined with physical modeling to re-
duce the number of surprises that can occur in
the transition[4].

o Sensor feedback: using sensors such as machine
vision or force feedback to overcome discrepancies
between simulation and reality[1].

These techniques can ease the transition between
simulation and reality, but they need to be embedded
in a system which can move back from reality to sim-
ulation. If they are used in a “one-pass” approach, in
which the transition from simulation to reality is done
just once, then the full potential of the simulation will
be lost. For example, if contact with the physical world
necessitates large changes in programming and factory
configuration, all of those changes must be made in
the relatively unforgiving environment of the physi-
cal machines. Similarly, if the product or processes
change, since the original simulated factory is not the
same as the implemented physical factory it is difficult
to meaningfully address those changes in simulation.
To truly achieve agility—the ability to rapidly deploy
factories to deliver a product to market quickly and
to rapidly reconfigure factories to adapt to changing
technologies and market needs—simulation and phys-
ical implementation need to be more closely coupled
and done iteratively.

The overall goal of the Architecture for Agile As-
sembly (AAA)[12] is such agility: AAA is designed to
allow real factories to be built incrementally and recon-
figured often as manufacturing processes are perfected
and needs change. Rather than having a strict sep-
aration in methods and mechanisms between design
and execution, we have developed a single interface
tool which bridges both. This integrated interface tool
provides a 3D graphical environment that guides an
evolving AAA factory through its various stages, al-
lowing the user to view and interact with the factory as
it is assembled, simulated, programmed, implemented,
and operated.

AAA systems are composed of a set of modular ro-
bust robotic agents. Each agent operates in a delib-
erately limited domain, but possesses a high degree of
capability within that domain. For example, our in-
stantiation of AAA, minifactory (Fig. 1) is focused on
four-degree-of-freedom (DOF) assembly of high-value,
high-precision electro-mechanical systems. In a mini-
factory there are courier agents that are “experts” in
moving products in the plane of the factory floor (the
platen), and manipulator agents that are “experts” in
lifting and rotating products. The agents are phys-
ically, computationally, and algorithmically modular,
and only when acting cooperatively can they perform
the 4-DOF operations required to produce a prod-
uct. In order to perform this kind of cooperation,
each agent knows its own characteristics, abilities, and
state, and can use the protocols of AAA to advertise
that information to its partners.

It is this self-representation that is the key to the in-
tegrated interface tool. Not only do agents share their
self-knowledge with each other, they also share it with
external entities such as the graphical user interface.
This paper describes how the AAA approach and pro-
tocols enable such a unified interface tool to shepherd
a minifactory throughout its life cycle.

2 Loading Factory Components

A minifactory is made up of components, which in-
clude active agents such as manipulators and couriers,
and passive support elements such as bridges, modular
base frames, and field joinable platens (Fig. 1). Every
component in a minifactory has a description, which
is a database containing all of the pertinent informa-
tion about that component, including how to view it,
how to model its geometry and behavior, and how to
constrain its assembly to other components.

In order for the simulated minifactory to quickly be-
come a working minifactory it is vital that the compo-
nent descriptions loaded into the interface tool match
the real attributes of the physical components. An
agent which cannot fit where its description says it
can fit or cannot do what its description says it can do
will drastically increase the time spent implementing
and integrating the minifactory.

Fortunately, a fundamental aspect of AAA agents

Figure 2: Interface tool interacting with a web browser

is that they all maintain and publish descriptions of
themselves. If a factory designer wants to minimize
the likelihood of inaccurate information, that designer
should directly access the agent itself rather than any
catalog or other mediator. There is no absolute guar-
antee that the agent s self-description is accurate, but
it is more likely to contain accurate, up-to-date infor-
mation specific to that agent than is a generic descrip-
tion of an agent of the appropriate class, or even a
passive catalog of agent descriptions.

To demonstrate the direct-access approach, we have
implemented a simple example of loading an agent s
self-description into the interface tool (Fig. 2). Fac-
tory designers can use their orld ide eb ()
browser to find a catalog of our prototype agents. Each
catalog entry is associated with one particular agent in
our laboratory. Clicking on a button next to the cata-
log entry starts up a helper application which sends an
agent “UR ” to the interface tool. The interface uses
the agent UR to contact the actual agent, and if it
is active puts a reference to that agent in a component
palette. The component palette is a list of iconified
representations of the components along with buttons
which allow the user to reserve a component and in-
sert a representation of that component into the design
environment. Designers can also use the component
palette to insert “clones” of components into the de-
sign environment, i.e. the remote components will not
be reserved for use, but simulated representations of
them will be available for design experiments.

e have also implemented simple component
servers which distribute and reserve descriptions of
passive components, such as our prototype base frames
and platens. These components do not have any ac-
tive computational element as the agents do, so there is
nothing uniquely associated with a passive component
which the interface tool can contact. Thus, the com-
ponent servers act as active catalogs which the user in-
terface can access. This approach should suffice, since
passive components should not change often, and thus

Description
isa is-a

ProductDesc ComponentDesc

isa isa isa

PlatenDesc FrameDesc AgentDesc

isa is-a

CourierDesc ManipulatorDesc

Figure 3: Class diagram for factory descriptions

can have stable, well cataloged geometric and func-
tional attributes.

Constructing Factories

The interface tool enables factory designers to quickly
take the component descriptions they have found and
assemble them together into a variety of different
factory configurations, snapping them together and
pulling them apart as they design the final factory.

Each component description contains a specification
of how it snaps together with other components. Cur-
rently we use a short cut which takes advantage of the
object oriented capabilities of our implementation lan-
guage, C |, to “hard-code” this specification. As the
class diagram in Fig. 3 shows, all factory infrastructure
component descriptions are descendents of the om-
ponentDesc class. All such subclasses must implement
an method, which takes another ompo-
nentDesc as an argument and determines first if the
target component is a valid candidate for component
assembly, and if it is, performs the appropriate ma-
nipulations on the description to attach the original
component to the target.

For example, if the user desires to assemble a given
platen to a given base frame, then the user simply
selects them both in the interface tool s 3D render-
ing and directs that they be assembled together. The

method of the platen description will be
invoked with the base frame description as an argu-
ment. This method will verify that the
base frame is a valid type for assembling itself to, and
will extract from the base frame s description where
platens should be mounted. Finally, the platen de-
scription s method will move the rendered
platen representation so that it is mounted appropri-
ately on the chosen simulated base frame.

imulation and rogramming

The interface tool lets a factory designer write and
debug simulated agent programs while the factory is
being constructed. The factory designer views a 3D
rendering of the running simulated factory as a whole,

Interface
isa

Agentinterface.
isa isa

RealAgentinterface SimAgentInterface

isa is-a

SimCourierinterface SimManipulatorlnterface

Figure 4: Class diagram for agent interfaces

and interacts with individual agents through virtual
control panels, using them to observe their state vari-
ables and debug the individual agent programs.

Every agent description must be a subclass of
AgentDesc which contains a field named .
The field is itself a database which encapsu-
lates the actual implementation of the agent—whether
it is a simulated agent running in the interface tool or it
is a physically instantiated agent which the interface
tool is interacting with remotely. The entries in the

database will be items such as state vari-
ables which can be monitored or parameters which can
be changed to affect the simulated or physical agent
operation.

The value of the field must be a sub-
class of nterface (Fig. 4). Any subclass of nterface
must implement an method. The interface tool
maintains a list of agent descriptions that it is moni-
toring or simulating, and calls the method of
each agent description s interface as often as possible.
The particular implementation of the method
appropriately moves the rendered parts of the agent
description, such as the graphical representation of a
manipulator s end effector.

Currently, the user specifies an agent s run-time
behavior through the use of a program written in

ython (a byte-coded, object-oriented programming
language). These programs are similar to the applets
used in programming in that they instantiate
objects with required methods rather than simply be-
ing a sequence of commands. The program objects
specifically have a bind method which is used to in-
dicate all of the global factory components the agent
will use, and a run method which is the actual script
that determines the agent run-time behavior|].

The architecture for simulating agent behavior is
shown in Fig. 5. hen the user runs a script, the
interface tool creates or contacts a scripting manager
process which launches the thread that will actually
execute the script. This script performs the neces-
sary inter-agent cooperation and sets up and monitors
controllers—the specification of the time-varying be-
havior of the agent. The controllers are actually sim-
ulated in the interface tool within the method
of the simulated agent interfaces, even though which

Interface Tool

Agent Description

[Agent Interface]

|[Scripting Object |
'l Running Python code ||

:LScri pting thread

Scripting Manager

Figure 5: Architecture for simulated agents

controllers are being run is specified by the external
scripting thread. All such simulated agent interfaces
are subclasses of imAgent nterface, and have similar
implementations of their method: first the ren-
dered position and orientation of the end effectors are
used to generate current state variable values, then
the simulated controller specified and parameterized
by the scripting thread is run, and finally, the new set
of estimated state variables is transformed into modi-
fied 3D renderings of the end effectors.

The simulations currently only model the motions
of the agent end-effectors. These simulations are fun-
damentally kinematic, using a motion model with
bounded velocity and acceleration (

). The different controllers are se-
quenced using the same efficient hybrid control strate-
gies for robust motion execution that are used in the
physical agents[11].

hysical Instantiation

Simulation never matches reality, a fact which often
limits the utility of off-line programming, since much of
the effort is expended in the details of making a system
work on physical machines well after the simulations
are finished. AAA agents first address this gap by
being able to calibrate themselves and explore their
physical environments. As long as the simulated world
and the real world are topologically compatible and
the real world allows the same physical motions as the
simulated agents, programs should be able to run in
the newly calibrated environment unchanged.

The same interface tool that was used to program a
simulated minifactory initiates the transformation into
a real factory and monitors this calibration and explo-
ration process. After exploration, the virtual factory
rendered by the interface tool is in essentially perfect
correspondence with the real factory. e expect users
to then switch back to simulation to test the programs
using the registered virtual environment before actu-

Interface Tool

[Agent Description }

Agent Int@—»
To agent lower level

/[Scripting Object |:
1| Running Python code

Scripting thread

|
[Eutatil ateapie~ Al

Agent High Level Interface

Figure
agents

Architecture for physically instantiated

ally trying them out on the real equipment. Any fatal
discrepancies, such as swapping manipulator positions
or moving components too close together to allow safe
passages for couriers, should be detectable and cor-
rected by the user at this point.

e do not expect that this geometric registration
will make the transition between simulation and real-
ity seamless: simulations will always miss some as-
pect of reality that may necessitate reprogramming
and possibly reconfiguration. e believe that lower-
ing the cost of moving back and forth between sim-
ulation and reality and using the same development
environment for both will naturally encourage an iter-
ative approach to developing an automation system, in
which major changes imposed by any unmodeled sur-
prises or changes in requirements and capabilities can
be addressed first in simulation, and then transferred
to reality.

Switching from a simulation of an agent to using
a real agent is a simple matter of changing the agent
description s interface to one on a physical agent and
transferring the program to that new interface. In sim-
ulation, the interface tool “owns” the agent descrip-
tion s interface, i.e. it completely resides within the in-
terface tool process. The interface to a physical agent
will be owned by the high level agent process running
on the physical agent s computer, as shown in Fig.
Thus, for a physically instantiated agent, the agent de-
scription s field will contain only a reference
to a remote database existing on the agent hardware
itself. The same script will run on the physical agent
as on the simulated agent, except that the scripting
thread will be run by the agent rather than by any in-
dependent scripting manager and the controllers will
be run using the actual control algorithms of the agent
rather than being simulated by the interface tool.
efore programs run on the agents, the agents at-
tempt to calibrate themselves and their environment.
art of every agent s calibration process is introspec-
tive, i.e. establishing and confirming their own phys-

ical and behavioral characteristics such as joint-limits
or acceleration abilities. Additionally couriers, being
the mobile factory agents, explore the exact geomet-
ric relationships between themselves and the factory
components around them. FEach courier is equipped
with an optical sensor that can locate precisely placed

EDs to sub-micron resolution|]. ultiple EDs
mounted on relevant components such as manipulator
end-effectors or bridges are used to precisely determine
their actual positions and orientations relative to the
exploring courier s frame of reference.

e are currently experimenting with two scenarios
to accomplish this exploration. In the first scenario,
each courier is given the estimated locations of the rel-
evant landmarks (i.e. components with locator EDs
mounted on them) by the interface tool. It then nego-
tiates with other couriers for the right to confirm the
positions of these landmarks, and builds up an accu-
rate local map from the inaccurate one. The second
scenario assumes no initial local map, but rather has
each courier run a geometrically complete algorithm
that covers its workspace. It will then have discovered
the exact locations of all of the relevant components
around it[2].

In either case, the interface tool audits the results
of each courier s exploration and uses those local maps
to generate a new accurate global map. In order to
maintain consistency within the global map, the in-
terface tool simply creates a tree of the geometric re-
lationships between the factory components. hen
a courier precisely identifies the geometric transform
between two components, the interface tool immedi-
ately adds this information to the tree if possible. If
the new information describes a significant inconsis-
tency with previous information, the user is notified.

hereas this solution is not capable of resolving re-
dundant calibration information in an intelligent way,
it is sufficient for the current implementation. ore
capable reconciliation algorithms based on geometric
graph matching are under investigation.

onitoring

Once a factory is instantiated, the interface tool should
no longer be strictly necessary, since the programs run
on each agent without need for any central control or
resources. However, the interface tool can still provide
a central place for monitoring factory operations in
order to keep records, detect problems, and discover
means of optimizing the factory.

The primary mechanism for monitoring the factory
operations is watching the agents state and monitor-
ing the products that the agents are manipulating.
The interface tool provides a 3D rendering of the whole
minifactory as it performs assembly tasks, as well as
providing virtual control panels to monitor less visible
elements of an individual agent s state.

The 3D rendering of the physical agents states
is achieved through their interface s method,

Prototype
Manipulator

/Parts Palette
Figure rototype minifactory hardware

just as the 3D rendering of the virtual agents states
was. All physical agent interface field values are
subclasses of the ealAgent nterface class, and their

method simply examines the current state val-
ues and converts those values into updates of the posi-
tion and orientation of the rendered agent s end effec-
tor.

The interface tool monitors products flowing in the
system by registering with each of its agents as a
“product auditor,” i.e. the interface tool will be no-
tified when the agents pick up products, when they
transfer products, and when they drop products. Thus
the interface tool can track the progress of products
through the factory, both visually, by presenting a 3D
representation of the products as they flow through
the factory, and statistically, by maintaining records
on the products as they flow through the factory.

The interface tool may prove to be a communica-
tions bottleneck for monitoring factory operations, i.e.
as a factory gets large, sending product information
and state values to the interface tool may prove over-
whelming. e have attempted to be efficient about
the amount of information that is transmitted from
the agents to the interface tool, but no matter what
is implemented, it is inevitable that a single, central
monitoring point will become overwhelmed for some
large factory size. Fortunately, since the interface tool
is not the central brain of the factory, overwhelming
it does not cripple the factory. Furthermore, since the
interface tool does not need to serve as the central co-
ordinating resource, there is no need to have only one.
For a very large factory, it may in fact make sense to
have two or more interface tools monitoring sections
of the factory to eliminate any potential bottlenecking
problems.

Conclusions

e have tested the integrated interface tool with our
prototype minifactory test-bed, which uses a fully in-
strumented courier and an overhead manipulator run-
ning on a standard platen and frame (Fig.). The
integrated interface tool can contact these prototype
agents and load their descriptions into its environ-
ment. The courier can explore its environment, lo-
cate landmarks which contain EDs with a repeata-
bility of 2 m (which is comparable to the limit
of repeatability of our current open-loop courier mo-
tion control) and transmit the updated positions of
those landmarks to the interface tool, which adjusts
the 3D rendering of the minifactory. Once closed-loop
control algorithms[l] have been integrated onto the
AAA couriers, the repeatability of the localization is
expected to move closer to the sub-micron resolution of
our optical and magnetic sensors. e have successfully
developed programs in simulation within the interface
tool and transferred them to the physical agents and
run them, after exploration, with no change.

The most pressing deficiency in our current inter-
face tool is the hard-coding of the assembly constraints
and behavioral specifications as C methods, which
means that no fundamentally new agents can be in-
troduced to the system at run time. Another major
problem with our current interface tool is that specifi-
cations of components and products must go through a
tedious and somewhat error prone conversion process
from their original CAD model to our current custom
factory description format. e are investigating ad-
dressing both of these problems through use of the
STE standard (Standard Exchange of roduct odel
Data)[14]. Adopting STE will give a means of im-
porting models using an industry standard mechanism
while also providing a means of adding the run-time
flexibility we need, as extensible elements of STE can
be used to specify behaviors and assembly constraints
of novel agents at run-time.

There are many other areas of research and devel-
opment involving the interface tool, such as using ge-
ometric and physical modeling in the simulations or
implementing better programming interfaces. e are
attempting to build the foundation from which we can
experiment in these various areas.

AAA is not only a comprehensive vision, it is an in-
tegrated vision which is involved in the development of
an automation line throughout its life cycle, from con-
ception to implementation. In fact, the goal of AAA is
to not only be involved at the various stages of devel-
opment, but to blur the distinction between the stages
to allow incremental design and modification of auto-
mated factories. Such an integrated vision demands
an integrated interface tool such as the one we have
implemented. Fortunately, at the same time as AAA
demands an integrated interface tool, it provides the
mechanisms that make such a tool if not trivial, at
least straight-forward to implement.

Ac no ledgements

This work was supported in part by NSF grant D I-
952315 . ack utler wassupported in part by an NSF
raduate Research Fellowship. The authors would like
to thank Ralph Hollis, Alfred Rizzi, Arthur uaid, and
atrick uir for their invaluable work on this project
and support for this paper.

eferences

