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Abstract

A promisingapproachto enablingthe rapid deployment
and reconfigurationof automatedassemblysystemsis to
make use of cooperating,modular, robust robotic agents.
Within suchanenvironment,eachroboticagentwill execute
its own program,while coordinatingwith peersto produce
globalycooperativeprecisionbehavior. Tosimplify theprob-
lem of agentprogramming,the structureof thoseprograms
is carefully designedto enablethe automaticencapsulation
of informationnecessaryfor executionduring distribution.
Similarly, the programmingmodel incorporatesstructures
for thecompactspecificationandrobustexecutionof poten-
tially complex andfragile cooperative behaviors. Thesebe-
haviors utilize a run-timeenvironmentthatincludestoolsto
automaticallysequencetheactivities of anagent.Takento-
gether, theseabstractionsenableaprogrammerto compactly
describethehigh-level behavior of theagentwhile relyingon
asetof formallycorrectcontrolstrategiestoproperlyexecute
andsequencethenecessarycontinuousbehaviors.

1. Introduction

Most robot programmingapproachesare basedon
standardcomputerlanguages,with theadditionof spe-
cial primitives,constructs,andlibrariesto supportthe
physicalcontrol of a robot [1]. Theselanguagesare
designedto enablethe control of a single robot, and
donotinherentlysupportdistributedsystemsof robots.
More abstractprogrammingmodelshave recentlyap-
peared[2, 3], but typically theseareeither “task” or
“process”basedandareappliedto theprogrammingof
work cells(whichmightcontainmultiplerobots).This
paperexploresthedistributedprogrammingmodelwe
aredevelopingfor usewith theArchitecturefor Agile
Assembly[4, 5], an ongoingproject in the Micrody-
namicSystemsLaboratoryatCarnegieMellon Univer-
sity’sRoboticsInstitute(for additionalinformationsee
http://www.cs.cmu.edu/ � msl).

The overall goal of the Architecturefor Agile As-
sembly (AAA) is manufacturingagility – enabling

Figure1: A minifactorysegment

both the rapid deploymentand rapid reconfiguration
of automationsystems– facilitating the early deliv-
ery of a productto marketandthe ability to adaptto
changingtechnologiesandmarketneeds.AAA strives
to achieve this form of agility by utilizing modularro-
bustroboticagents [6]. Agentsaremechanically, com-
putationally, andalgorithmicallymodularmechanisms
which operatein a deliberatelylimited domain, but
possessesa high degreeof capabilitywithin that do-
main.For theremainderof thispaperwewill focuson
minifactory, o specificinstantiationof AAA, designed
to facilitate four-degree-of-freedom(4-DOF) assem-
bly of high-value, high-precisionelectro-mechanical
products(seeFigure1). Minifactoriescontainagents
(calledcouriers)thatare“experts”in producttransport
andlocalplanarmanipulation,andotheragents(called
manipulators)that are “experts” at vertical insertion
and part rotation. Throughcooperative group action
theseagentsperformthe4-DOFoperationsrequiredto
producea product.

Modularity is a central philosophicalconcept in
AAA; not only doesit enablescalingof the factory
system,it alsooffersthepotentialfor improvedsystem



robustnessby eliminatingsinglepoint failures.Unfor-
tunatelyit alsopresentsnew anduniquechallengesfor
the systemprogrammer. As there is no central fac-
tory “brain” andthusno singleprogramfor an entire
AAA factory, eachagentmustexecuteits ownprogram
which mustreliably interactwith thoseof its peersin
orderto give rise to thedesiredoverall systembehav-
ior. Whereasconstructinggenericdistributedsystems
of this form is a difficult problem, it is our conjec-
turethatby restrictingour focusto a smallbut impor-
tantclassof roboticsystems,sufficient constraintsare
placedon theproblemto makeit tractable.

Toward this end, we have developeda model for
agentprogramsthat seeksto simplify the distributed
programmingproblem:i) agentprogramsareselfcon-
tained“applets,” thatutilize standardprotocolsto syn-
chronizeand communicateabout their behavior; ii)
eachagentmakesuseof a high-performancehybrid
controlsystemto manageits continuousbehavior. The
intentof this programmingmodelis to provide a high
levelof expressivenessandflexibility for theagentpro-
grammer(be it a humandesigneror automatedcode
generatingtool) while ensuringa structuredandreli-
ableinterfaceto theunderlyingcontrolsystems.
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Figure2: Shift of control responsibilityfor distributedpro-
gramming.

Onefundamentalchallengefor any robot program-
ming systemis that the “program” mustspecifyboth
a system’s discretebehavior as well as its continu-
ous behavior – i.e., it must coordinateboth the con-
tinuousdomainof the robot’s control systemandthe
discretedomainof eventmanagementassociatedwith
overall behavior. Most approachesto robot program-
ming makea sharpdistinctionbetweenthesedomains
– wherethe continuous,state-basedview is relegated
to theexecutionof controllers,andall decisionsabout
which controllersto run and when to run them are
madeby higher-level systemsusinga discrete,event
basedview. We chooseto placethis distinctionat a
slightlyhigherlevelandmakeit amoreformalabstrac-
tion barrierthanis normal. Figure2 depictsa course
decompositionof thecontinuumof tasksto beunder-
takenby a robot’scontrolsystem,makingexplicit our
intentto move the“barrier” betweenthereal-timeand
generalpurposetasks.In AAA, anagent’sexecutionis

dividedinto two distinctlayers:ahigher-level discrete
layer responsiblefor theabstractsemanticsof factory
operation,andalower-level continuouslayerthatman-
agesthe sequencingandexecutingof specificcontrol
lawswhich,in turn,influencethephysicalenvironment
of the agent. The critical distinction is that the con-
tinuousmechanismsareusedto guide the transitions
betweencontrollersas well as to run the controllers,
freeingthehigh-level agentprogramsto dealwith the
morerelevant andabstractproblemof decidingwhat
to do andhow to do it. This notion of automatically
managingthetransitionbetweencontrollerswasintro-
ducedin [7], abstractlyfit to thedomainof minifactory
in [8], andrecentlydemonstratedexperimentally[9].

2. Distributed Programming

Thedistributedandcooperativenatureof AAA hasim-
plicationsontheformof agentprograms:anagentpro-
gram is not simply a script, but ratherdefinesan in-
stanceof a classthat implementsa numberof specific
methods.The programmay definea new classto be
instantiated,or asubclassfrom a pre-existing standard
one,but theclassmustimplementa standardinterface.
This conceptis very similar to theJava “applets” that
areusedin world-widewebprogramming.For reasons
includingeaseof portingandlicensingissues,wehave
chosenPython[10], anotherobject-orientedlanguage
whichcanbeinterpretedor byte-compiled,to program
our roboticagentsratherthanJava.

Every robotic agent program must provide two
methods:bind and run. They encapsulatethe two
major conflictingrequirementsof anagentprogram–
it must specify behavior in referenceto external en-
tities,but mustrun in a completelydistributedfashion
andcannotrely onany centralizedresourceor database
duringexecution.For example,a couriermustbeable
to know it will be interactingwith a particularmanip-
ulator, but theinformationon how to contactthatma-
nipulatormustresidewith thecourieratruntime.Sim-
ilarly, amanipulatormayneedto know it will getparts
of a specifictype from a specificpartsfeedingdevice
withouthaving to contactacentraldatabaseatruntime
to get the geometricandproduct-specificinformation
it needsto performits operations.

In the AAA environment, an agentprogram has
two distinct phasesin its life cycle. First, it is writ-
ten and simulatedwithin a centralizedinterfaceand
designtool. This tool provides a factory developer
with a global view of the factory systemunder de-
velopment[11]. Whenexecutingwithin the central-
izedsimulationenvironment,thebind methodsimply
causesthe relevant itemsto be lookedup in the sim-
ulationdatabasebeforeproceedingto executetherun



# Agent class definition
class Program(CourierProgram):
# Binding method
def bind(self):
# superclass has some binding to do
CourierProgram.bind(self)

# Bind to a particular manipulator
self.source = self.bindAgent("FeederManip")
# Bind to a particular factory area
self.corridor = self.bindArea("CorridorA")

# Execution method
def run(self):
# initialize the movement
self.startIn(self.corridor)

# block until manipulator is ready
self.initiateRendezvous(self.source, "Feeding")

# move into the workspace
self.moveTo(self.sourceArea)

# coordinate with manipulator to
# get product from it
self.acceptProduct()

# The coordinated maneuver is done
self.finishRendezvous("Loading")

# move out of the workspace
self.moveTo(self.corridor, blocking=1)

# instantiate the applet
program = Program()

Figure3: A simplecourierprogram

method. The secondphaseoccurswhen the factory
developerdownloadsanagentprogramfrom thesimu-
lationenvironmentto thephysicalagent.At thispoint,
theagentprogrammustbebe“bound” with all of the
globalfactoryinformationtheagentwill requirewhile
executingthe program. To bind a program,the inter-
face tool executesthat program’s bind method,and
usestheresultsto constructa small databasecontain-
ing the informationnecessaryfor the agentto locate,
bothgeometricallyandlogically, all of thefactoryele-
mentsit will interactwith. This smalldatabaseserves
asa startingpoint for anagent’s self-initializationand
exploration of its environment. For example, in the
samplecourierprogram(Figure3) the bind method
callsbindAgent("FeederManip"), which declares
that the agentprogramwantsto know aboutthe ma-
nipulatornamedFeederManipandassignsthe result
of thatbindingto a localmembervariablefor usein its
runmethod.Asaresultof theinvocation,theinterface
tool will addthe relative positionof FeederManipin
thecourier’s frameof referenceaswell asthenetwork
addressof FeederManipto thelocaldatabasewhichis
sentto thecourieralongwith theprogramtext.

The run methodcontainsthe “script” which actu-
ally runsduring execution,implementingthe discrete
logic of the agentwhich is responsiblefor initiating
andcoordinatingthe behavior of this agent. For ex-
ample,the run methodin Figure 4 causesthe agent
to loop, transferringpartsfrom a partsfeederto couri-
ersthatrequestthem.Therunmethodis writtenusing

# Agent class definition
class Program(ManipProgram):

# Binding method
def bind(self):
# bind a bulk feeder
self.feeder = self.bindDescription("ShaftFeeder")
# bind product information
self.product = self.bindPrototype("ShaftB")

# Execution method
def run(self):
while 1:

# convenience function for getting a
# product from a feeder
self.getPartFromFeeder(self.product, self.feeder)

# Wait for a courier to rendezvous
# with the manipulator for feeding
partner = self.acceptRendezvous("Feeding")

# and transfer the product to the courier
self.transferGraspedProduct(partner)

# instantiate the applet
program = Program()

Figure4: A simplemanipulatorprogram.

conveniencemethodsdefinedby theprogram’s super-
classes,which themselvescausetheexchangeof mes-
sagesbetweenagentsusingAAA protocolsandthede-
ploymentof hybrid-controllers(describedin Section3.
below). For example,theconveniencemethodinvoked
by self.getPartFromFeeder is implementedin
the parentclass,ManipProgram. This convenience
methodextracts information from the productproto-
typeandfeederinstancepassedinto it, andsetsupand
monitorscontrol policies which will robustly pick a
productof thattypefrom thatfeeder.

3. Control and Coordination

As we have alreadydescribed,an agentprogramin
AAA hastwo distinct but relatedrun-time responsi-
bilities: i) it mustcarryout semanticnegotiationswith
its peersto accomplishwork on behalfof the factory;
andii) it mustproperlyparameterizeandsequencethe
applicationof low-level control strategiesto success-
fully manipulatethephysicalworld. Theprogramming
modelwe areutilizing simplifiesthe relationshipbe-
tweenthesetwo responsibilitiesand minimizestheir
impactupononeanother. Specifically, to reducethe
complexity associatedwith writing agentprograms,
thelow-level controlstrategiesarenow responsiblefor
the detailsassociatedwith switchingandsequencing
the variouscontrol policiesavailable at any onemo-
ment.

3.1. Real-time control

To simplify the developmentof agentprograms,the
processof decidingexactly whenand how to switch
betweenlow-level control strategies is removed from



theagentprogramandisolatedfrom thehigh-level se-
manticnegotiationsthataretheprimarydomainof the
agentprogram. However it is importantto note that
thehigh-levelagentprogramcontinuesto maintainex-
plicit control over the precisepolicies that are avail-
able for useat any given moment. The fundamental
modelweutilize for theexecutionof controlstrategies
waspresentedin [8]. Briefly, ratherthan relying on
theagentprogramto generatetrajectoriesthroughthe
freeconfigurationspaceof theagent,theprogramde-
composesthefreeconfigurationspaceinto overlapping
regionsandparameterizingcontrolpoliciesassociated
with eachregion. The left sideof Figure5 shows a
simplistic“cartoon”renderingof this approach,where���

representthecontrolpolicieswhich areguaranteed
to safelymove any statefrom anywherein the asso-
ciatedshadeddomaininto the domainof the “next”
controlpolicy. A hybrid control systemis thenrespon-
sible for switchingor sequencingbetweenthe control
policiesassociatedwith this decompositionto achieve
a desiredoverall goal, inducinga monotonicallycon-
vergentfinite stateautomataover the control policies
suchasthatdepictedon theright of Figure5.
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Figure5: Exampledecompositionof a trivial planarconfig-
urationspace,andtheassociatedinducedgraphrelatingthe
controlpolicies.

Thisschemedescribesthebehavior of any oneagent
in termsof a collectionof feedbackstrategies based
on the stateof the systemas perceived by the indi-
vidual agent. The result is a hybrid on-line control
policy (onethat switchesbetweenvariouscontinuous
policies)which makesuseof thecollectionof control
policiesthathave beenpassedto it by thehigher-level
agentprogram.By leaving the selectionof goalsand
the associatedprioritized decompositionof the state
spaceto the agentprogramit remainspossibleto de-
scribe(attheprogramlevel) arbitrarilycomplex behav-
ior withoutconstructingcodetoundertakethecomplex
real-timemanagementof thosebehaviors.

Giventhismodelfor executingphysicalaction,it re-
mainstheresponsibilityof theagentprogram(specif-
ically the scriptdefinedby its run method)to create,

parameterize,and managethe currentlyactive setof
controllersalongwith theassociatedsetsof goalsand
domains.Thusthescriptis only responsiblefor choos-
ing the current“overall” goal alongwith appropriate
intermediatesub-goals,and providing parameteriza-
tions of control strategies to accomplishthosegoals.
The complex and potentially error-proneproblemof
making real-time changesto the underlying control
systemis left to thehybridcontrolsystem.

The interfacebetweenthescriptandthis controller
manager is quite straightforward. The class from
which a particularagentprograminstanceis derived
providesstandardtoolsfor creatingandparameterizing
controllersandtheirassociateddomains.Theseresult-
ing controllersare then,at the directionof the script,
placedinto an orderedlist of active controllers. Fi-
nally, thecontrollermanagerwill selecttheappropriate
control policy (from this list) to executein real-time.
Thedetailsof high-bandwidthmonitoringandcoordi-
nationof anagentandits peers’stateis performedby
theselower levels,utilizing a dedicatedlocal commu-
nicationsnetworktoshareinformationbetweenagents.
This localnetworkis usedto passrelevantinformation
betweenagentsonly aboutthosevariablesthat effect
their execution,resultingin efficient utilization of the
availablecommunicationbandwidthin a mannerthat
is transparentto theagentprogram.

Communicationof progressandcompletionof tasks
backto thescriptis accomplishedby useof eithercall-
back functionsor direct polling of the actualstateof
the agent. In general,the expectationis that scripts
will submita moderately-sizedlist of control actions
alongwith a setof fail-safeandfall-backstrategiesca-
pable of respondingto the most dire circumstances,
then sleep (wait for a call-back)until eitherprogress
hasbeenmadeor afailurehasbeendetected.Whenap-
propriateprogresshasbeenmadethescriptwill, while
motionis still executing,appendadditionalcontrolac-
tions to the “top” of the active controllerlist indicat-
ing new goalsanddeletethosecontrol actionswhich
areno longeruseful. If a failurehasbeendetectedthe
programwill proceedin a similar fashion;only theac-
tions addedto the list will most likely attemptto re-
cover from theproblem.

By bothparameterizingthespecificcontrollers(set-
ting the goal, defining the domain of applicability,
specifyinggains,etc.) and orderingtheir placement
on thelist of active controllers,a scriptis ableto spec-
ify complex andefficient physicalmotion that is fun-
damentallyrobust. This provides a rich andexpres-
sive methodfor programsto specifyphysicalmotion
while reducingtherisksassociatedwith writing those
programs. Within the minifactory system,an agent
presentsa “pallet” of control policies, eachwith an



# submit actions to move from self.current to area
def moveTo(area):
# get the goal at boundary of area
# and self.current in self.current
x,y = self.getBoundaryGoal(area)

# create and submit action
controller = self.goTo(x,y)
domain = self.inArea(self.current)
self.submit(controller, domain)

# reserve area, blocking if necessary
self.reserve(area)

# get goal at boundary of area and
# self.current in area
x,y,overlap = self.getOverlapGoal(area)

# create and submit action to cross into
# the new area
self.submit(self.goTo(x,y), self.inRegion(overlap))

# create and submit action to drive to the
# goal in area
# note that a callback class is invoked when
# this action starts which unreserves self.current
self.submit(self.goTo(x,y), self.inArea(area),

start=Unreserve(self.current))

# keep track of current area
self.current = area

Figure6: Codefragmentfor moveTo.

associateddomain of applicability, to the program-
ming system. In addition to a standardcollectionof
proportional-integral-derivative (PID) controllers the
pallettypically includesotherstrategiesfor safelyexe-
cutinglargemotionsin thepresenceof actuatorandge-
ometricconstraintsor undertakingcooperative assem-
bly taskswith peeragents(e.g. for performingvisually
of forceguidedcoordination).

In practice,the detailsof this interfacearehidden
from the programmerby a set of standard“conve-
niencefunctions.” For examplethemoveTo(...) call
in Figure 3 would actually expandto the codefrag-
mentshown in Figure6. It is herethat a specificre-
sourcereservation protocol is implementedto ensure
safeoperation[6] andwherea “standard”setof con-
trollers are parameterizedand placedon the list of
active controllers. As a simple meansto coordinate
the overall activity of agents,minifactory makesuse
of a distributedresourcereservation systemsto guard
againstinter-agentcollisions. In this particular in-
stancea geometricregion in thefactoryis reservedby
thecall to self.reserve, anda call-backmethodis
registeredto executeas the agententersthe destina-
tion area. Theparticularcall-backmethodusedhere,
Unreserve(...), freesthe reservation held on the
currentareaassoonastheagentdepartsit, thusallow-
ing its useby otheragentsin thesystem.

3.2. Agent interaction

Thusfar we have focusedon describinghow individ-
ual agentscanbeprogrammedto accomplishspecific

def acceptProduct(source):
# slave to manipulator when it is ready
controller = self.create("Slave")
controller.master = source
predicate = self.create("WatchPartner")
predicate.is_grasping = True
self.insert(ControllerAction(controller, predicate))

# hold position after part placement and
# manipulator withdrawal
controller = self.holdPosition()
predicate = self.create("WatchPartner")
predicate.is_grasping = False
predicate.min_height = source.offset
action = ControllerAction(controller, predicate)
action.addStartCallback(self.tag("PartPlaced"))
id = self.insert(action)

# wait until part placed
self.waitFor("PartPlaced")
# and clean up action list
self.truncate(id)

Figure7: Codefor acceptProduct.

tasks.Constructionof a usefulAAA system,however,
requiresthatagentssuccessfullyinteractwith onean-
otherto undertakecooperative behaviors. Not surpris-
ingly, ourapproachtoperformingthesecooperativeac-
tionsutilizesthesameprotocolsandprogramingcon-
structswe have beendescribing. The notablediffer-
enceis thattheexecutionof thespecificcontrolstrate-
giesmay requiresharingof significantstateinforma-
tion betweentheparticipatingagentsin orderfor their
behavior to betightly coordinated.

It makessenseto think of the two suchcooperat-
ing agentsastransientlyforming an abstractmachine
consistingof their collective degreesof freedom,and
a singleprogramdictatingthebehavior of thisabstract
machine – atermwewill useto describeacollectionof
agentsthat areactively coordinatingtheir continuous
behavior with oneanother, as would happenwhen a
minifactorycourierandmanipulatorcooperateto per-
form a visually guidedinsertiontask. Of course,in
actualityeachagentwill beexecutingits own program
and associatedcontrol policies, and it is critical that
theparticipatingagentsreliablyenterinto,execute,and
dissolve their coordinatedbehavior. Clearlyfor this to
happenthe agentsmust arrangeto executelow-level
control strategieswhich are“compatible”– i.e. when
executedin parallelthey mustcommunicatetheappro-
priatestateinformationto their peer(s)to jointly per-
form thedesiredphysicaloperation.

As alreadydescribedin Section2.ourprogramming
systemincludesprimitive tools to performthe neces-
sarysemanticnegotiation– e.g., the variousforms of
rendezvous statementin Figures3 and4. Onesim-
ple case,with extremelyasymmetricinteraction,is a
transientmaster/slaverelationshipbetweentwo agents,
with one agentabdicatingcontrol of its actuatorsto
theother, which monitorsthestateof bothandpasses
force and torque commandsto its own actuatorsas



def transferGraspedProduct(partner):
# from the product information and the partner
# courier attributes calculate the courier
# position and the manipulator position
# necessary to place the product on the courier
(cour_x, cour_y, manip_z, manip_th) = \

self.findPlacementTransform(partner)

# submit action to get ready to place
controller = self.coordinatedMove(cour_x, cour_y,

manip_z-self.offset, manip_th)
self.insert(ControllerAction(controller,

self.isGrasping()))

# submit action to go down to place product when
# both courier and manipulator have arrived at
# pre-placement positions
controller = self.goto(manip_z, manip_th)
predicate = self.coordinatedAt(cour_x, cour_y,

max_z=manip_z-self.offset, manip_th)
self.insert(ControllerAction(controller, predicate))

# submit action to release part when force sensed
controller = self.releasePart()
predicate = self.forceThreshold(min_force = 0.5)
self.insert(ControllerAction(controller, predicate))

# submit action to back off from courier
action = ControllerAction(

self.goto(manip_z-self.offset, manip_th),
self.isNotGrasping())

action.addStartCallback("FinishedPlacement")
id = self.insert(action)

# wait for placement to finish
self.waitFor("FinishedPlacement")
# register transfer
self.registerTransferTo(partner)
# clean up action list
self.truncate(id)

Figure8: Codefor transferGraspedProduct.

well asthoseof the slave agentvia a high-bandwidth
local network. The detailsof this interaction,taken
from a simulatedminifactory, areillustratedin Figure
7 which shows theexpansionof theacceptProduct
procedurefromFigure3,andFigure8 whichshowsthe
expansionof thetransferGraspedProduct proce-
dure. The acceptProduct methodabdicatescon-
trol of the courier’s motions to a manipulatormas-
ter until a product has been placed on it and the
manipulatorhas backedoff by a given offset. The
transferGraspedProduct methodcoordinatesthe
motionsof themanipulatorandcourierandplacesthe
partit hasalreadygraspedontothecourier.

Here, the invocationof acceptRendezvous and
initiateRendezvous, by the manipulator and
courier respectively, has indicatedthe willingnessof
theseagentsto participatein the cooperative behav-
ior, aswell ashaving forcedthemto synchronizetheir
execution. Immediatelyfollowing this a set of con-
trol policies are submittedthat causethe underlying
control systemsto synchronizeandundertakethe de-
siredcooperative behavior. Implicitly, thesubmission
and execution of thesecontrol policies (Slave and
coordinatedMove) has createda high-bandwidth
communicationschannelbetweenthetwo agents.This
communicationchannelis usedto enablethesupervi-
sory controllermanageron eachagentto maketran-

sitions basedon statevariablescontainedwithin the
peer, andto allow relevantstate(andin this casecom-
mandinformation)to passbetweenthetwo controlal-
gorithms.

Notethatthroughoutthisprocesstheindividualcon-
troller managersmaintainauthority over the specific
policies that are executedby eachagent,and that it
is only throughthe submissionof a compatiblesetof
policies by both agentprogramsthat the desiredbe-
havior is realized. We do not foreseethis extremely
asymmetricform of cooperationasthe typical behav-
ior of agents,but it servesto illustratethepoint: typi-
cally thecontrolpolicy will besegmentedbetweenthe
agentswith eachindividualcomputingthosetermsrel-
evant to its own behavior. The manualspecification
of theseinteractionscanbea complex process.Fortu-
natelya significantpercentageof the interactionsfall
into stereotypicclassesfor which conveniencefunc-
tionscaneasilybeprovided.

4. Conclusions

The specificsof the AAA and minifactory environ-
mentshave led us to considera new model for pro-
grammingdistributedautomationsystems.Thismodel
incorporatesfeaturesthatstandardizethespecification
of physicalaction and regulate interactionsbetween
cooperatingentities. The ramificationsof thesefea-
tures are manifestboth in the form and function of
the resultingprograms,aswell asthe structureof the
run-timeenvironmentin which they operate.As a re-
sult, agentprogramsexecutein a structuredenviron-
ment with standardizedmeansfor coordinatingtheir
activity, makingit possibleto constructcomplex mod-
ular automationsystems,while programmingthemby
focussingpredominantlyon local behavior. We have
demonstratedthis capabilityboth in simulation(coor-
dinatingtheactivity of upwardsof 40 agents),andex-
perimentally(performingprecisionplacementwith 3
cooperatingagents)[9].

4.1. Future work

Thereremainmany openpracticalquestionsaboutthe
implicationsof our programmingmodel. For exam-
ple, to producea working factory, usersmustgenerate
a functionalsetof distributedcooperatingagentpro-
grams.Fortunately, thescopeof any individual agent
is limited, andeachagentwill includea setof pow-
erful primitivesaswell asconveniencemethodsto fa-
cilitate their usein stereotypicalapplications.Unfor-
tunately, no matterhow shortor simplethe programs
may becomeasa resultof these“libraries,” the chore



of generatingasemi-customprogramfor eachagentin
asystemremains.Beyondthepotentialtediumof gen-
eratingtheseprograms,the programmeris essentially
facedwith producingalarge,distributedprogram,with
all of theknown pitfalls of thatdomain,suchasdead-
lock andlivelock.

To overcometheseissuesa meansof presentingthe
factoryprogrammerdifferentwaysof viewing thepro-
grammingproblemmustbe developed.For example,
aprogrammermaywantto think in termsof a factory-
centric view of the problem, where overall product
movementthrough the entire factory may be speci-
fied througha work-flow representation,i.e. whatpro-
cesseshave to occurandin whatorder. Alternatively,
a usermay want to considera product-centricview,
whereproductmodelsarespecifiedandannotatedwith
processinformationto describetherelativemotionbe-
tweenpartsindependentlyof themachinesusedto per-
form thosemanipulations.In the future, we envision
anAAA programmingenvironmentthatincludestools
whichsupportthesmoothtransitionbetweenthesevar-
iousviews of the designandprogrammingproblems.
Furthermore,they will rely on user-guidedsearchand
optimizationmethodsto semi-automaticallytransform
the information provided by thesedifferentviews of
theprobleminto factory layoutsanddistributedagent
programs.

Regardlessof whatview theuserhasof factorypro-
gramming,agent-centric,factory-centric,or product-
centric,ultimatelyany distributedfactorysystemmust
executethoseprogramson a set of agentswhich in-
teractingwith eachother and with the productcom-
ponentsto performan assemblytask. This paperhas
presentedtheprogrammingmodelandprotocolswhich
will form thebasicbuilding blocksfor futuresystems
whichcanbringthevisionof rapiddeployment,recon-
figuration,andreprogrammingof automatedassembly
systemscloserto reality.
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