
Distributed Programming and Coordination for
Agent-Based Modular Automation

Alfred A. Rizzi, Jay Gowdy, and Ralph L. Hollis

TheRoboticsInstitute

CarnegieMellon University�
jayg,arizzi,rhollis� @ri.cmu.edu

Abstract

A promisingapproachto enablingthe rapid deployment
and reconfigurationof automatedassemblysystemsis to
make use of cooperating,modular, robust robotic agents.
Within suchanenvironment,eachroboticagentwill execute
its own program,while coordinatingwith peersto produce
globalycooperativeprecisionbehavior. Tosimplify theprob-
lem of agentprogramming,the structureof thoseprograms
is carefully designedto enablethe automaticencapsulation
of informationnecessaryfor executionduring distribution.
Similarly, the programmingmodel incorporatesstructures
for thecompactspecificationandrobustexecutionof poten-
tially complex andfragile cooperative behaviors. Thesebe-
haviors utilize a run-timeenvironmentthatincludestoolsto
automaticallysequencetheactivities of anagent.Takento-
gether, theseabstractionsenableaprogrammerto compactly
describethehigh-level behavior of theagentwhile relyingon
asetof formallycorrectcontrolstrategiestoproperlyexecute
andsequencethenecessarycontinuousbehaviors.

1. Introduction

Most robot programmingapproachesare basedon
standardcomputerlanguages,with theadditionof spe-
cial primitives,constructs,andlibrariesto supportthe
physicalcontrol of a robot [1]. Theselanguagesare
designedto enablethe control of a single robot, and
donotinherentlysupportdistributedsystemsof robots.
More abstractprogrammingmodelshave recentlyap-
peared[2, 3], but typically theseareeither “task” or
“process”basedandareappliedto theprogrammingof
work cells(whichmightcontainmultiplerobots).This
paperexploresthedistributedprogrammingmodelwe
aredevelopingfor usewith theArchitecturefor Agile
Assembly[4, 5], an ongoingproject in the Micrody-
namicSystemsLaboratoryatCarnegieMellon Univer-
sity’sRoboticsInstitute(for additionalinformationsee
http://www.cs.cmu.edu/ � msl).

The overall goal of the Architecturefor Agile As-
sembly (AAA) is manufacturingagility – enabling

Figure1: A minifactorysegment

both the rapid deploymentand rapid reconfiguration
of automationsystems– facilitating the early deliv-
ery of a productto marketandthe ability to adaptto
changingtechnologiesandmarketneeds.AAA strives
to achieve this form of agility by utilizing modularro-
bustroboticagents [6]. Agentsaremechanically, com-
putationally, andalgorithmicallymodularmechanisms
which operatein a deliberatelylimited domain, but
possessesa high degreeof capabilitywithin that do-
main.For theremainderof thispaperwewill focuson
minifactory, o specificinstantiationof AAA, designed
to facilitate four-degree-of-freedom(4-DOF) assem-
bly of high-value, high-precisionelectro-mechanical
products(seeFigure1). Minifactoriescontainagents
(calledcouriers)thatare“experts”in producttransport
andlocalplanarmanipulation,andotheragents(called
manipulators)that are “experts” at vertical insertion
and part rotation. Throughcooperative group action
theseagentsperformthe4-DOFoperationsrequiredto
producea product.

Modularity is a central philosophicalconcept in
AAA; not only doesit enablescalingof the factory
system,it alsooffersthepotentialfor improvedsystem

robustnessby eliminatingsinglepoint failures.Unfor-
tunatelyit alsopresentsnew anduniquechallengesfor
the systemprogrammer. As there is no central fac-
tory “brain” andthusno singleprogramfor an entire
AAA factory, eachagentmustexecuteits ownprogram
which mustreliably interactwith thoseof its peersin
orderto give rise to thedesiredoverall systembehav-
ior. Whereasconstructinggenericdistributedsystems
of this form is a difficult problem, it is our conjec-
turethatby restrictingour focusto a smallbut impor-
tantclassof roboticsystems,sufficient constraintsare
placedon theproblemto makeit tractable.

Toward this end, we have developeda model for
agentprogramsthat seeksto simplify the distributed
programmingproblem:i) agentprogramsareselfcon-
tained“applets,” thatutilize standardprotocolsto syn-
chronizeand communicateabout their behavior; ii)
eachagentmakesuseof a high-performancehybrid
controlsystemto manageits continuousbehavior. The
intentof this programmingmodelis to provide a high
levelof expressivenessandflexibility for theagentpro-
grammer(be it a humandesigneror automatedcode
generatingtool) while ensuringa structuredandreli-
ableinterfaceto theunderlyingcontrolsystems.

��������	�

������	��������������������
���� ��� �!#"
$ %'&)(*+!,.- !�/.0�1�(2�34�5#687.9#: ; <
=
>@?�A 9.B.; BDC

E�F G@HJILKJMDK
N�O MDK�IQP.HDMJF R O

S#T�UDV�WXT�Y Y Z�W[�\ Z.]�^�VJ_ T.U
`ba�ced�f.ghji c i@k a�lma�cDn

o#p.qDr�sXp�t t u�s
v uJwJx@u�q@y.z qe{

|~} �#�����
�����e���Q�.�D� } � �

Figure2: Shift of control responsibilityfor distributedpro-
gramming.

Onefundamentalchallengefor any robot program-
ming systemis that the “program” mustspecifyboth
a system’s discretebehavior as well as its continu-
ous behavior – i.e., it must coordinateboth the con-
tinuousdomainof the robot’s control systemandthe
discretedomainof eventmanagementassociatedwith
overall behavior. Most approachesto robot program-
ming makea sharpdistinctionbetweenthesedomains
– wherethe continuous,state-basedview is relegated
to theexecutionof controllers,andall decisionsabout
which controllersto run and when to run them are
madeby higher-level systemsusinga discrete,event
basedview. We chooseto placethis distinctionat a
slightlyhigherlevelandmakeit amoreformalabstrac-
tion barrierthanis normal. Figure2 depictsa course
decompositionof thecontinuumof tasksto beunder-
takenby a robot’scontrolsystem,makingexplicit our
intentto move the“barrier” betweenthereal-timeand
generalpurposetasks.In AAA, anagent’sexecutionis

dividedinto two distinctlayers:ahigher-level discrete
layer responsiblefor theabstractsemanticsof factory
operation,andalower-level continuouslayerthatman-
agesthe sequencingandexecutingof specificcontrol
lawswhich,in turn,influencethephysicalenvironment
of the agent. The critical distinction is that the con-
tinuousmechanismsareusedto guide the transitions
betweencontrollersas well as to run the controllers,
freeingthehigh-level agentprogramsto dealwith the
morerelevant andabstractproblemof decidingwhat
to do andhow to do it. This notion of automatically
managingthetransitionbetweencontrollerswasintro-
ducedin [7], abstractlyfit to thedomainof minifactory
in [8], andrecentlydemonstratedexperimentally[9].

2. Distributed Programming

Thedistributedandcooperativenatureof AAA hasim-
plicationsontheformof agentprograms:anagentpro-
gram is not simply a script, but ratherdefinesan in-
stanceof a classthat implementsa numberof specific
methods.The programmay definea new classto be
instantiated,or asubclassfrom a pre-existing standard
one,but theclassmustimplementa standardinterface.
This conceptis very similar to theJava “applets” that
areusedin world-widewebprogramming.For reasons
includingeaseof portingandlicensingissues,wehave
chosenPython[10], anotherobject-orientedlanguage
whichcanbeinterpretedor byte-compiled,to program
our roboticagentsratherthanJava.

Every robotic agent program must provide two
methods:bind and run. They encapsulatethe two
major conflictingrequirementsof anagentprogram–
it must specify behavior in referenceto external en-
tities,but mustrun in a completelydistributedfashion
andcannotrely onany centralizedresourceor database
duringexecution.For example,a couriermustbeable
to know it will be interactingwith a particularmanip-
ulator, but theinformationon how to contactthatma-
nipulatormustresidewith thecourieratruntime.Sim-
ilarly, amanipulatormayneedto know it will getparts
of a specifictype from a specificpartsfeedingdevice
withouthaving to contactacentraldatabaseatruntime
to get the geometricandproduct-specificinformation
it needsto performits operations.

In the AAA environment, an agentprogram has
two distinct phasesin its life cycle. First, it is writ-
ten and simulatedwithin a centralizedinterfaceand
designtool. This tool provides a factory developer
with a global view of the factory systemunder de-
velopment[11]. Whenexecutingwithin the central-
izedsimulationenvironment,thebind methodsimply
causesthe relevant itemsto be lookedup in the sim-
ulationdatabasebeforeproceedingto executetherun

Agent class definition
class Program(CourierProgram):
Binding method
def bind(self):
superclass has some binding to do
CourierProgram.bind(self)

Bind to a particular manipulator
self.source = self.bindAgent("FeederManip")
Bind to a particular factory area
self.corridor = self.bindArea("CorridorA")

Execution method
def run(self):
initialize the movement
self.startIn(self.corridor)

block until manipulator is ready
self.initiateRendezvous(self.source, "Feeding")

move into the workspace
self.moveTo(self.sourceArea)

coordinate with manipulator to
get product from it
self.acceptProduct()

The coordinated maneuver is done
self.finishRendezvous("Loading")

move out of the workspace
self.moveTo(self.corridor, blocking=1)

instantiate the applet
program = Program()

Figure3: A simplecourierprogram

method. The secondphaseoccurswhen the factory
developerdownloadsanagentprogramfrom thesimu-
lationenvironmentto thephysicalagent.At thispoint,
theagentprogrammustbebe“bound” with all of the
globalfactoryinformationtheagentwill requirewhile
executingthe program. To bind a program,the inter-
face tool executesthat program’s bind method,and
usestheresultsto constructa small databasecontain-
ing the informationnecessaryfor the agentto locate,
bothgeometricallyandlogically, all of thefactoryele-
mentsit will interactwith. This smalldatabaseserves
asa startingpoint for anagent’s self-initializationand
exploration of its environment. For example, in the
samplecourierprogram(Figure3) the bind method
callsbindAgent("FeederManip"), which declares
that the agentprogramwantsto know aboutthe ma-
nipulatornamedFeederManipandassignsthe result
of thatbindingto a localmembervariablefor usein its
runmethod.Asaresultof theinvocation,theinterface
tool will addthe relative positionof FeederManipin
thecourier’s frameof referenceaswell asthenetwork
addressof FeederManipto thelocaldatabasewhichis
sentto thecourieralongwith theprogramtext.

The run methodcontainsthe “script” which actu-
ally runsduring execution,implementingthe discrete
logic of the agentwhich is responsiblefor initiating
andcoordinatingthe behavior of this agent. For ex-
ample,the run methodin Figure 4 causesthe agent
to loop, transferringpartsfrom a partsfeederto couri-
ersthatrequestthem.Therunmethodis writtenusing

Agent class definition
class Program(ManipProgram):

Binding method
def bind(self):
bind a bulk feeder
self.feeder = self.bindDescription("ShaftFeeder")
bind product information
self.product = self.bindPrototype("ShaftB")

Execution method
def run(self):
while 1:

convenience function for getting a
product from a feeder
self.getPartFromFeeder(self.product, self.feeder)

Wait for a courier to rendezvous
with the manipulator for feeding
partner = self.acceptRendezvous("Feeding")

and transfer the product to the courier
self.transferGraspedProduct(partner)

instantiate the applet
program = Program()

Figure4: A simplemanipulatorprogram.

conveniencemethodsdefinedby theprogram’s super-
classes,which themselvescausetheexchangeof mes-
sagesbetweenagentsusingAAA protocolsandthede-
ploymentof hybrid-controllers(describedin Section3.
below). For example,theconveniencemethodinvoked
by self.getPartFromFeeder is implementedin
the parentclass,ManipProgram. This convenience
methodextracts information from the productproto-
typeandfeederinstancepassedinto it, andsetsupand
monitorscontrol policies which will robustly pick a
productof thattypefrom thatfeeder.

3. Control and Coordination

As we have alreadydescribed,an agentprogramin
AAA hastwo distinct but relatedrun-time responsi-
bilities: i) it mustcarryout semanticnegotiationswith
its peersto accomplishwork on behalfof the factory;
andii) it mustproperlyparameterizeandsequencethe
applicationof low-level control strategiesto success-
fully manipulatethephysicalworld. Theprogramming
modelwe areutilizing simplifiesthe relationshipbe-
tweenthesetwo responsibilitiesand minimizestheir
impactupononeanother. Specifically, to reducethe
complexity associatedwith writing agentprograms,
thelow-level controlstrategiesarenow responsiblefor
the detailsassociatedwith switchingandsequencing
the variouscontrol policiesavailable at any onemo-
ment.

3.1. Real-time control

To simplify the developmentof agentprograms,the
processof decidingexactly whenand how to switch
betweenlow-level control strategies is removed from

theagentprogramandisolatedfrom thehigh-level se-
manticnegotiationsthataretheprimarydomainof the
agentprogram. However it is importantto note that
thehigh-levelagentprogramcontinuesto maintainex-
plicit control over the precisepolicies that are avail-
able for useat any given moment. The fundamental
modelweutilize for theexecutionof controlstrategies
waspresentedin [8]. Briefly, ratherthan relying on
theagentprogramto generatetrajectoriesthroughthe
freeconfigurationspaceof theagent,theprogramde-
composesthefreeconfigurationspaceinto overlapping
regionsandparameterizingcontrolpoliciesassociated
with eachregion. The left sideof Figure5 shows a
simplistic“cartoon”renderingof this approach,where���

representthecontrolpolicieswhich areguaranteed
to safelymove any statefrom anywherein the asso-
ciatedshadeddomaininto the domainof the “next”
controlpolicy. A hybrid control systemis thenrespon-
sible for switchingor sequencingbetweenthe control
policiesassociatedwith this decompositionto achieve
a desiredoverall goal, inducinga monotonicallycon-
vergentfinite stateautomataover the control policies
suchasthatdepictedon theright of Figure5.

F �

F �F �

F � F �

F � F �

F �

Figure5: Exampledecompositionof a trivial planarconfig-
urationspace,andtheassociatedinducedgraphrelatingthe
controlpolicies.

Thisschemedescribesthebehavior of any oneagent
in termsof a collectionof feedbackstrategies based
on the stateof the systemas perceived by the indi-
vidual agent. The result is a hybrid on-line control
policy (onethat switchesbetweenvariouscontinuous
policies)which makesuseof thecollectionof control
policiesthathave beenpassedto it by thehigher-level
agentprogram.By leaving the selectionof goalsand
the associatedprioritized decompositionof the state
spaceto the agentprogramit remainspossibleto de-
scribe(attheprogramlevel) arbitrarilycomplex behav-
ior withoutconstructingcodetoundertakethecomplex
real-timemanagementof thosebehaviors.

Giventhismodelfor executingphysicalaction,it re-
mainstheresponsibilityof theagentprogram(specif-
ically the scriptdefinedby its run method)to create,

parameterize,and managethe currentlyactive setof
controllersalongwith theassociatedsetsof goalsand
domains.Thusthescriptis only responsiblefor choos-
ing the current“overall” goal alongwith appropriate
intermediatesub-goals,and providing parameteriza-
tions of control strategies to accomplishthosegoals.
The complex and potentially error-proneproblemof
making real-time changesto the underlying control
systemis left to thehybridcontrolsystem.

The interfacebetweenthescriptandthis controller
manager is quite straightforward. The class from
which a particularagentprograminstanceis derived
providesstandardtoolsfor creatingandparameterizing
controllersandtheirassociateddomains.Theseresult-
ing controllersare then,at the directionof the script,
placedinto an orderedlist of active controllers. Fi-
nally, thecontrollermanagerwill selecttheappropriate
control policy (from this list) to executein real-time.
Thedetailsof high-bandwidthmonitoringandcoordi-
nationof anagentandits peers’stateis performedby
theselower levels,utilizing a dedicatedlocal commu-
nicationsnetworktoshareinformationbetweenagents.
This localnetworkis usedto passrelevantinformation
betweenagentsonly aboutthosevariablesthat effect
their execution,resultingin efficient utilization of the
availablecommunicationbandwidthin a mannerthat
is transparentto theagentprogram.

Communicationof progressandcompletionof tasks
backto thescriptis accomplishedby useof eithercall-
back functionsor direct polling of the actualstateof
the agent. In general,the expectationis that scripts
will submita moderately-sizedlist of control actions
alongwith a setof fail-safeandfall-backstrategiesca-
pable of respondingto the most dire circumstances,
then sleep (wait for a call-back)until eitherprogress
hasbeenmadeor afailurehasbeendetected.Whenap-
propriateprogresshasbeenmadethescriptwill, while
motionis still executing,appendadditionalcontrolac-
tions to the “top” of the active controllerlist indicat-
ing new goalsanddeletethosecontrol actionswhich
areno longeruseful. If a failurehasbeendetectedthe
programwill proceedin a similar fashion;only theac-
tions addedto the list will most likely attemptto re-
cover from theproblem.

By bothparameterizingthespecificcontrollers(set-
ting the goal, defining the domain of applicability,
specifyinggains,etc.) and orderingtheir placement
on thelist of active controllers,a scriptis ableto spec-
ify complex andefficient physicalmotion that is fun-
damentallyrobust. This provides a rich andexpres-
sive methodfor programsto specifyphysicalmotion
while reducingtherisksassociatedwith writing those
programs. Within the minifactory system,an agent
presentsa “pallet” of control policies, eachwith an

submit actions to move from self.current to area
def moveTo(area):
get the goal at boundary of area
and self.current in self.current
x,y = self.getBoundaryGoal(area)

create and submit action
controller = self.goTo(x,y)
domain = self.inArea(self.current)
self.submit(controller, domain)

reserve area, blocking if necessary
self.reserve(area)

get goal at boundary of area and
self.current in area
x,y,overlap = self.getOverlapGoal(area)

create and submit action to cross into
the new area
self.submit(self.goTo(x,y), self.inRegion(overlap))

create and submit action to drive to the
goal in area
note that a callback class is invoked when
this action starts which unreserves self.current
self.submit(self.goTo(x,y), self.inArea(area),

start=Unreserve(self.current))

keep track of current area
self.current = area

Figure6: Codefragmentfor moveTo.

associateddomain of applicability, to the program-
ming system. In addition to a standardcollectionof
proportional-integral-derivative (PID) controllers the
pallettypically includesotherstrategiesfor safelyexe-
cutinglargemotionsin thepresenceof actuatorandge-
ometricconstraintsor undertakingcooperative assem-
bly taskswith peeragents(e.g. for performingvisually
of forceguidedcoordination).

In practice,the detailsof this interfacearehidden
from the programmerby a set of standard“conve-
niencefunctions.” For examplethemoveTo(...) call
in Figure 3 would actually expandto the codefrag-
mentshown in Figure6. It is herethat a specificre-
sourcereservation protocol is implementedto ensure
safeoperation[6] andwherea “standard”setof con-
trollers are parameterizedand placedon the list of
active controllers. As a simple meansto coordinate
the overall activity of agents,minifactory makesuse
of a distributedresourcereservation systemsto guard
againstinter-agentcollisions. In this particular in-
stancea geometricregion in thefactoryis reservedby
thecall to self.reserve, anda call-backmethodis
registeredto executeas the agententersthe destina-
tion area. Theparticularcall-backmethodusedhere,
Unreserve(...), freesthe reservation held on the
currentareaassoonastheagentdepartsit, thusallow-
ing its useby otheragentsin thesystem.

3.2. Agent interaction

Thusfar we have focusedon describinghow individ-
ual agentscanbeprogrammedto accomplishspecific

def acceptProduct(source):
slave to manipulator when it is ready
controller = self.create("Slave")
controller.master = source
predicate = self.create("WatchPartner")
predicate.is_grasping = True
self.insert(ControllerAction(controller, predicate))

hold position after part placement and
manipulator withdrawal
controller = self.holdPosition()
predicate = self.create("WatchPartner")
predicate.is_grasping = False
predicate.min_height = source.offset
action = ControllerAction(controller, predicate)
action.addStartCallback(self.tag("PartPlaced"))
id = self.insert(action)

wait until part placed
self.waitFor("PartPlaced")
and clean up action list
self.truncate(id)

Figure7: Codefor acceptProduct.

tasks.Constructionof a usefulAAA system,however,
requiresthatagentssuccessfullyinteractwith onean-
otherto undertakecooperative behaviors. Not surpris-
ingly, ourapproachtoperformingthesecooperativeac-
tionsutilizesthesameprotocolsandprogramingcon-
structswe have beendescribing. The notablediffer-
enceis thattheexecutionof thespecificcontrolstrate-
giesmay requiresharingof significantstateinforma-
tion betweentheparticipatingagentsin orderfor their
behavior to betightly coordinated.

It makessenseto think of the two suchcooperat-
ing agentsastransientlyforming an abstractmachine
consistingof their collective degreesof freedom,and
a singleprogramdictatingthebehavior of thisabstract
machine – atermwewill useto describeacollectionof
agentsthat areactively coordinatingtheir continuous
behavior with oneanother, as would happenwhen a
minifactorycourierandmanipulatorcooperateto per-
form a visually guidedinsertiontask. Of course,in
actualityeachagentwill beexecutingits own program
and associatedcontrol policies, and it is critical that
theparticipatingagentsreliablyenterinto,execute,and
dissolve their coordinatedbehavior. Clearlyfor this to
happenthe agentsmust arrangeto executelow-level
control strategieswhich are“compatible”– i.e. when
executedin parallelthey mustcommunicatetheappro-
priatestateinformationto their peer(s)to jointly per-
form thedesiredphysicaloperation.

As alreadydescribedin Section2.ourprogramming
systemincludesprimitive tools to performthe neces-
sarysemanticnegotiation– e.g., the variousforms of
rendezvous statementin Figures3 and4. Onesim-
ple case,with extremelyasymmetricinteraction,is a
transientmaster/slaverelationshipbetweentwo agents,
with one agentabdicatingcontrol of its actuatorsto
theother, which monitorsthestateof bothandpasses
force and torque commandsto its own actuatorsas

def transferGraspedProduct(partner):
from the product information and the partner
courier attributes calculate the courier
position and the manipulator position
necessary to place the product on the courier
(cour_x, cour_y, manip_z, manip_th) = \

self.findPlacementTransform(partner)

submit action to get ready to place
controller = self.coordinatedMove(cour_x, cour_y,

manip_z-self.offset, manip_th)
self.insert(ControllerAction(controller,

self.isGrasping()))

submit action to go down to place product when
both courier and manipulator have arrived at
pre-placement positions
controller = self.goto(manip_z, manip_th)
predicate = self.coordinatedAt(cour_x, cour_y,

max_z=manip_z-self.offset, manip_th)
self.insert(ControllerAction(controller, predicate))

submit action to release part when force sensed
controller = self.releasePart()
predicate = self.forceThreshold(min_force = 0.5)
self.insert(ControllerAction(controller, predicate))

submit action to back off from courier
action = ControllerAction(

self.goto(manip_z-self.offset, manip_th),
self.isNotGrasping())

action.addStartCallback("FinishedPlacement")
id = self.insert(action)

wait for placement to finish
self.waitFor("FinishedPlacement")
register transfer
self.registerTransferTo(partner)
clean up action list
self.truncate(id)

Figure8: Codefor transferGraspedProduct.

well asthoseof the slave agentvia a high-bandwidth
local network. The detailsof this interaction,taken
from a simulatedminifactory, areillustratedin Figure
7 which shows theexpansionof theacceptProduct
procedurefromFigure3,andFigure8 whichshowsthe
expansionof thetransferGraspedProduct proce-
dure. The acceptProduct methodabdicatescon-
trol of the courier’s motions to a manipulatormas-
ter until a product has been placed on it and the
manipulatorhas backedoff by a given offset. The
transferGraspedProduct methodcoordinatesthe
motionsof themanipulatorandcourierandplacesthe
partit hasalreadygraspedontothecourier.

Here, the invocationof acceptRendezvous and
initiateRendezvous, by the manipulator and
courier respectively, has indicatedthe willingnessof
theseagentsto participatein the cooperative behav-
ior, aswell ashaving forcedthemto synchronizetheir
execution. Immediatelyfollowing this a set of con-
trol policies are submittedthat causethe underlying
control systemsto synchronizeandundertakethe de-
siredcooperative behavior. Implicitly, thesubmission
and execution of thesecontrol policies (Slave and
coordinatedMove) has createda high-bandwidth
communicationschannelbetweenthetwo agents.This
communicationchannelis usedto enablethesupervi-
sory controllermanageron eachagentto maketran-

sitions basedon statevariablescontainedwithin the
peer, andto allow relevantstate(andin this casecom-
mandinformation)to passbetweenthetwo controlal-
gorithms.

Notethatthroughoutthisprocesstheindividualcon-
troller managersmaintainauthority over the specific
policies that are executedby eachagent,and that it
is only throughthe submissionof a compatiblesetof
policies by both agentprogramsthat the desiredbe-
havior is realized. We do not foreseethis extremely
asymmetricform of cooperationasthe typical behav-
ior of agents,but it servesto illustratethepoint: typi-
cally thecontrolpolicy will besegmentedbetweenthe
agentswith eachindividualcomputingthosetermsrel-
evant to its own behavior. The manualspecification
of theseinteractionscanbea complex process.Fortu-
natelya significantpercentageof the interactionsfall
into stereotypicclassesfor which conveniencefunc-
tionscaneasilybeprovided.

4. Conclusions

The specificsof the AAA and minifactory environ-
mentshave led us to considera new model for pro-
grammingdistributedautomationsystems.Thismodel
incorporatesfeaturesthatstandardizethespecification
of physicalaction and regulate interactionsbetween
cooperatingentities. The ramificationsof thesefea-
tures are manifestboth in the form and function of
the resultingprograms,aswell asthe structureof the
run-timeenvironmentin which they operate.As a re-
sult, agentprogramsexecutein a structuredenviron-
ment with standardizedmeansfor coordinatingtheir
activity, makingit possibleto constructcomplex mod-
ular automationsystems,while programmingthemby
focussingpredominantlyon local behavior. We have
demonstratedthis capabilityboth in simulation(coor-
dinatingtheactivity of upwardsof 40 agents),andex-
perimentally(performingprecisionplacementwith 3
cooperatingagents)[9].

4.1. Future work

Thereremainmany openpracticalquestionsaboutthe
implicationsof our programmingmodel. For exam-
ple, to producea working factory, usersmustgenerate
a functionalsetof distributedcooperatingagentpro-
grams.Fortunately, thescopeof any individual agent
is limited, andeachagentwill includea setof pow-
erful primitivesaswell asconveniencemethodsto fa-
cilitate their usein stereotypicalapplications.Unfor-
tunately, no matterhow shortor simplethe programs
may becomeasa resultof these“libraries,” the chore

of generatingasemi-customprogramfor eachagentin
asystemremains.Beyondthepotentialtediumof gen-
eratingtheseprograms,the programmeris essentially
facedwith producingalarge,distributedprogram,with
all of theknown pitfalls of thatdomain,suchasdead-
lock andlivelock.

To overcometheseissuesa meansof presentingthe
factoryprogrammerdifferentwaysof viewing thepro-
grammingproblemmustbe developed.For example,
aprogrammermaywantto think in termsof a factory-
centric view of the problem, where overall product
movementthrough the entire factory may be speci-
fied througha work-flow representation,i.e. whatpro-
cesseshave to occurandin whatorder. Alternatively,
a usermay want to considera product-centricview,
whereproductmodelsarespecifiedandannotatedwith
processinformationto describetherelativemotionbe-
tweenpartsindependentlyof themachinesusedto per-
form thosemanipulations.In the future, we envision
anAAA programmingenvironmentthatincludestools
whichsupportthesmoothtransitionbetweenthesevar-
iousviews of the designandprogrammingproblems.
Furthermore,they will rely on user-guidedsearchand
optimizationmethodsto semi-automaticallytransform
the information provided by thesedifferentviews of
theprobleminto factory layoutsanddistributedagent
programs.

Regardlessof whatview theuserhasof factorypro-
gramming,agent-centric,factory-centric,or product-
centric,ultimatelyany distributedfactorysystemmust
executethoseprogramson a set of agentswhich in-
teractingwith eachother and with the productcom-
ponentsto performan assemblytask. This paperhas
presentedtheprogrammingmodelandprotocolswhich
will form thebasicbuilding blocksfor futuresystems
whichcanbringthevisionof rapiddeployment,recon-
figuration,andreprogrammingof automatedassembly
systemscloserto reality.

Acknowledgments

This work wassupportedin part by the NSF through
grantsDMI-9523156andCDA-9503992.Theauthors
would like to thankall the membersof the Micrody-
namic SystemsLaboratory, and in particularArthur
Quaid,ZackButler, andPatrick Muir, for their invalu-
ablework on theprojectandsupportfor thispaper.

References

[1] T. Lozano-Perez.Robotprogramming.Proceedings of
IEEE, 71(7):821–841,1983.

[2] G.BerryandG. Gonthier. TheESTERELsynchronous

programminglanguage:design,semantics,implemen-
tation. Science of Computer Programming, 19(2):87–
152,November1992.

[3] R. W. Harrigan. Automatingthe operationof robots
in hazardousenvironments. In Proceedings of the
IEEE/RSJ Int’l Conf. on Intelligent Robots and Sys-
tems, pages1211–1219,Yokohama,Japan,July1993.

[4] R. L. Hollis and A. Quaid. An architecturefor agile
assembly. In Proc. Am. Soc. of Precision Engineering,
10th Annual Mtg., Austin,TX, October15-191995.

[5] R. L. Hollis and A. A. Rizzi. Opportunitiesfor in-
creasedintelligenceandautonomyin robotic systems
for manufacturing.In ����� International Symposium of
Robotics Research, Hayama,Japan,October1997.

[6] A. A. Rizzi, J.Gowdy, andR. L. Hollis. Agile assem-
bly architecture:An agent-basedapproachto modular
precisionassemblysystems. In IEEE Int’l. Conf. on
Robotics and Automation, pagesVol. 2, p. 1511–1516,
Albuquerque,April 1997.

[7] R. R. Burridge,A. A. Rizzi, andD. E. Koditschek.Se-
quentialcompositionof dynamicallydexterousrobot
behaviors. International Journal of Robotics Research,
18(6):534–555,June1999.

[8] A. A. Rizzi. Hybrid controlasamethodfor robotmo-
tion programming.In IEEE Int’l. Conf. on Robotics and
Automation, pages832–837,Leuven, Belgium, May
1998.

[9] J. Gowdy, R. L. Hollis, A. A. Rizzi, andM. L. Chen.
Architecture for agile assembly: Cooperative preci-
sion assembly. In IEEE International Conference on
Robotics and Automation Video Proceedings, 2000.
(submitted).

[10] G. vanRossum.Python Tutorial. Corporationfor Na-
tional ResearchInitiatives,Reston,VA, August1998.

[11] J.Gowdy andZ. J.Butler. An integratedinterfacetool
for the architecturefor agileassembly. In Proc. IEEE
Int’l. Conf. on Robotics and Automation, pages3097–
3102,Detroit,MI, May 1999.

