
2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

Fast, Dynamic Trajectory Planning for a Dynamically Stable Mobile

Robot

Michael Shomin1 and Ralph Hollis2

Abstract— This work presents a method to generate dy-

namically feasible trajectories for a balancing robot in the

presence of obstacles, both static and moving. Intended for

use on a ballbot, these trajectories respect the dynamics of

the robot, and can be generated in milliseconds. Trajectories

were experimentally verified on the ballbot in unstructured

indoor environments at speeds up to .7 m/s and distances of up

to 25 m. The method presented provides a tractable solution

for indoor ballbot navigation, enabling safe movement through

unstructured environments.

I. INTRODUCTION

Personal robots need to navigate in dense, cluttered, un-
structured environments. The last five years have seen a
tremendous amount of research in this area, allowing robots
to operate in human environments. This is critical for robots
that will eventually provide useful services and interact with
humans. Although this capability has been heavily explored
for robots such as the PR2 [1] and other statically stable
robots, the problem remains unsolved for dynamically stable
robots.

In this paper, we present a method for planning collision
free paths for the ballbot, a dynamically stable, underactuated
robot that balances on a single spherical wheel. We also
explore replanning in the presence of dynamic obstacles as
well as replanning to account for localization information.
Together, these capabilities allow the ballbot to navigate
cluttered spaces over long distances in the presence of
dynamic obstacles.

Planning for dynamic robots generally requires a higher
dimensional plan than kinematic robots, as the dynamics
of the robot must be respected in the trajectory planning.
Kinodynamic planning [2] tries to solve the problem of
concurrent dynamic and kinematic plans. This still requires
a high dimensional search space, and as such takes consid-
erable computational effort when attempted with techniques
such as graph search. Most efforts attempt to sidestep this
bottleneck by using techniques such as RRT* [3]. Such
efforts rely on controllable linear dynamics, however, and
still need to search a high dimensional space, often making
them infeasible for real-time operation.

Achieving dynamically feasible trajectories is critical for
the ballbot. Although the robot is 1.75 m tall and weighs
60 kg, dynamically balancing affords the robot inherent
compliance, requiring only 3 N of force to be moved. Even

*This work was supported by NSF Grant IIS-11165334.
1M. Shomin is a PhD Candidate at the Robotics Institute, Carnegie Mel-

lon University, Pittsburgh, PA, 15213, USA mshomin at cmu.edu

2R. Hollis is a Research Professor, also at the Robotics Institute
rhollis at cs.cmu.edu

Fig. 1. The ballbot shown executing a trajectory amongst static obstacles
(white boxes). The desired path is shown in green. The blue and yellow is a
replanned path to account for localization updates, as discussed in Section
IV-B.

though the ballbot is as tall, it is very slender with a body
diameter of .4 m. Lastly, the robot is omnidirectional.

Previous work on trajectory planning for the ballbot [4]
takes previously generated motion primitives [5] that satisfy
the dynamics of the robot and sequentially compose them
to create longer trajectories. This method yields feasible
trajectories for a ballbot but has some drawbacks. The motion
primitives are instantiated on a regular grid which means that
initial and final configurations are limited to a discrete set of
poses. Also, this navigation is not real-time computationally
feasible for spaces larger than 5 m ⇥ 5 m. In an effort
to solve some of these problems, our more recent work
formulated the ballbot as a differentially flat system [6].
Differential Flatness [7] is a property of some dynamic
systems which can reduce the complexity of generating
feasible trajectories [8]. This prior work was able to generate
single point-to-point robot trajectories in milliseconds and
execute them, however, multi waypoint trajectories were not
investigated.

II. DYNAMIC MODEL AND NOTATION

As in our prior work [6], we consider the ballbot as a
decoupled, planar, wheeled inverted pendulum, as shown in
Fig. 2, where � is the lean angle, ✓ the ball angle, l the
distance from the center of the ball to the center of mass,
radius of the ball r, mass of the sphere m

s

, moment of
inertia of the sphere I

s

, mass of the body m
b

, moment of
inertia of the body I

b

, and gravitational constant g. With
these parameters, the equations of motion for the system

(a)

r

mbody

()b()a

Fig. 1. (a) The ballbot balancing, (b) Planar ballbot model with ball and
body configurations shown.

By global change of coordinates ✓0
x

= ✓
x

� �
y

and ✓0
y

=

✓
y

+ �
x

, the equations of motion with the new configuration
vector q0

= [✓0
x

, ✓0
y

, �
x

, �
y

]

T has no input coupling in F 0
(q0

):

F 0
(q0

) =

2

664

1 0

0 1

0 0

0 0

3

775 . (24)

The new forced Euler-Lagrange equations are:

M 0
(q0

)q̈0
+ C 0

(q0, q̇0
)q̇0

+ G0
(q0

) = F 0
(q0

)⌧. (25)

It is to be noted that the underactuated system in Eq. 25
satisfies all the properties of shape-accelerated underactuated
systems and balancing systems listed in Sec. II-B. The expres-
sions for M 0, C 0, G0 are omitted here due to lack of space.
The last two equations of motion in Eq. 25 form the

dynamic constraint equations of the system and these equa-
tions are used for the optimal shape trajectory planner in
Sec. III-B. The optimization algorithm used here is Levenberg-
Marquardt algorithm (LMA), which is a widely used tool for
minimization problems in least-squares curve fitting and non-
linear programming. The dynamic equations were simulated
in MATLAB and the optimization was implemented using
MATLAB’s lsqnonlin function. Some of the planning results
are presented below.

A. Results of Optimal Shape Trajectory Planning
This section presents a variety of desired x

w

(t) and y
w

(t)
that satisfy the conditions in Sec. III-B and the corresponding
planned optimal shape trajectories, �p

x

(t) and �p

y

(t), which
should be tracked to achieve them. It is important to note that
the desired trajectories, x

w

(t) and y
w

(t), are trajectories of the
center of the ball and not trajectories of the system’s center of
gravity. On a flat floor, these trajectories match the trajectories
of the ball’s contact point with the floor.

1) Straight Line Motion: Let’s start with the simplest of
trajectories that involve moving along a straight line between
static configurations, i.e., starting from rest at one point on
the floor and coming to rest at another point on the floor. The
desired x

w

(t) and y
w

(t) are chosen to be nonic (9th degree)
polynomials in t so that their first four derivatives satisfy the
boundary conditions.

Planned
Desired

Li
ne
ar
Y
Po
sit
io
n
(m
)

Linear X Position (m)
0 1 2

0

1

2

Fig. 2. Straight Line Motion - Linear XY (This figure is best viewed in
color.)

x
w

(t) =

9X

i=0

a
i

ti,

y
w

(t) =

9X

i=0

b
i

ti, (26)

where the coefficients a
i

s and b
i

s are determined based on
the initial and final desired configurations.

�p

y

�p
x

A
ng
le
(d
eg
)

Time (s)
0 5 10

�2

�1

0

1

2

Fig. 3. Straight Line Motion - Planned Shape Trajectories

(b)

Fig. 2. Ballbot: (a) balancing on its single spherical wheel, (b) planar
ballbot model notation diagram.

become:

Mq̈ + Cq̇ + G = U, (1)

q =


✓
�

�
, M =


I
s

+ m
b

r2

+ m
s

r2 �m
b

lr cos �
�m

b

lr cos � m
b

l2 + I
b

�
,

C =


0 m

b

˙�lr sin �
0 0

�
, G =


0

�m
b

gl sin �

�
, U =


⌧

�⌧

�
.

These two equations can be reformulated into the internal
and external system dynamics [5]:

M 0
(q)q̈ + C 0

(q, q̇) + G0
(q) =


⌧
0

�
, (2)

where the second equation, the internal system dynamics, is
equal to zero on the right hand side.

III. TRAJECTORY GENERATION
A. Differential Flatness

Differential Flatness [7] is essentially a model reduction,
where a system is reduced from its full state to its “flat
outputs.” As long as the flat outputs satisfy appropriate
smoothness conditions, the outputs and their derivatives can
be mapped back to the full state. In the case of the ballbot,
the second equation of motion from (2) can be written as:

0 = (↵ + �)

¨✓ + (↵ + � + 2�)

¨� � �� ˙�2

+

�g�

r
, (3)

with ↵ = I
ball

+ (m
ball

+ m
body

)r2, � = m
body

rl, � =

I
body

+ m
body

l2, each constants. After using a small angle
approximation for �, this equation can be used to find a flat
output variable S for the system [6]:

S = �
1

✓ + �
2

�, (4)

where �
1

= r(↵

�

+ 1) and �
2

=

r

�

(↵ + � + 2�), both
constants. As show in prior work [6], this mapping gives
the ability to generate a trajectory in the flat output space
that satisfies boundary conditions in the original state space.
This yields a trajectory that satisfies the equations of motion
and is therefore dynamically feasible.

B. Minimum Crackle Formulation
Similar to the generation of trajectories for quadrotors

[9], a polynomial basis set can be used in the flat output
space. Polynomials are chosen as they satisfy the smoothness
constraints of the differential flatness requirements and can
be formulated from boundary conditions relatively easily. To
generate multi-waypoint trajectories, polynomial segments
are put together and constrained to be continuous at in-
termediate waypoints. It is beneficial to leave the veloc-
ity and other derivatives unspecified at these intermediate
waypoints, but instead to optimize a trajectory across all
waypoints. As seen in quadrotor trajectory generation [9],
smooth feasible trajectories can be found by minimizing
the snap (fourth derivative of position) over the trajectory,
because the quadrotor is a third order system. The ballbot is
a 4th order system in flat output space and can exploit the
same methods to minimize crackle, the fifth derivative of
position. This is equivalent to minimizing the lean angular
acceleration, which is proportional to the rate of change of
the control input. To minimize crackle, a single polynomial
trajectory is first formulated as

s(t) =

9X

i=1

c
i

ti, (5)

where c
i

are the coefficients of the polynomial and t is time
in seconds. This can be considered as a vector operation:

s(t) = cT p(t), (6)

where c is the column vector of coefficients c
i

and p(t) is
the column vector of t0 through t9 evaluated at t. For the
convenience of this derivation, the order of c is the c

9

down
to c

0

. Now let p
i

(t) be the ith derivative of p(t). Since we
are interested in the 5th derivative (crackle) of p(t):

p
5

(t) =

⇥
9!

4!

t4 8!

3!

t3 7!

2!

t2 6!t 5! 0

1⇥5

⇤
T (7)

where 0

1⇥5

is a 1 by 5 vector of zeros. With this formulation,
the problem can be posed as the minimization of the sum
squared crackle from t

0

to t
f

, the start and end times of the
polynomial:

min

Z
tf

t0

(cT p
5

(t))2dt. (8)

Now let a be just the nonzero coefficient from (7), and let c̄
be the associated polynomial coefficients: c

9

- c
5

. Then the
objection function becomes:

c̄T

diag(a)

2

6664

t8 t7 t6 t5 t4

t7 t6 t5 t4 t3

t6 t5 t4 t3 t2

t5 t4 t3 t2 t
t4 t3 t2 t 1

3

7775
diag(a)c̄. (9)

After integration and evaluation from t
0

to t
f

, the center
matrix of t’s becomes:

2

6664

t
e

(9) t
e

(8) t
e

(7) t
e

(6) t
e

(5)

t
e

(8) t
e

(7) t
e

(6) t
e

(5) t
e

(4)

t
e

(7) t
e

(6) t
e

(5) t
e

(4) t
e

(3)

t
e

(6) t
e

(5) t
e

(4) t
e

(3) t
e

(2)

t
e

(5) t
e

(4) t
e

(3) t
e

(2) t
e

(1)

3

7775
= T, (10)

where t
e

(i) =

1

i

(ti
f

� ti
0

). Now, let H = diag(a)Tdiag(a)

and it can be seen that integral of sum squared crackle, (8),
can be written as

Z
tf

t0

(cT p
5

(t))2dt = c̄T Hc̄. (11)

(11) is now in the form of a cost function for a quadratic
program (QP) that minimizes the squared crackle over a
trajectory. To use the whole vector c, the cost matrix needs
to have zero padding:

Q =


H 0

5⇥5

0

5⇥5

0

5⇥5

�
. (12)

Now the optimization becomes:

min cT Qc s.t. Ac = b. (13)

Here the equality constraint is the position of the desired
waypoints and any fixed derivatives. This formulation ex-
tends to multi-waypoint trajectories naturally by concatenat-
ing the polynomial coefficients in c of multiple consecutive
segments. Q is then repeated along the diagonal to create
a block diagonal matrix [9]. In this case, the equality
constraints must also enforce consistency, meaning that the
derivatives at the end of one polynomial segment must be
equal to derivatives at the start of the next segment. This for-
mulation will produce multi-waypoint minimum crackle tra-
jectories, but it is numerically unstable for large trajectories.
This is because the decision variables, the polynomial coeffi-
cients, can be of vastly different magnitudes. This failure can
be seen in Fig. 3(b). The figure shows that although the first
quarter of the trajectory is optimized properly, eventually the
solver can no longer satisfy the consistency constraints and
the path is discontinuous. Fortunately, the problem can be
formulated as a much more stable, unconstrained QP.

C. Unconstrained Optimization

The key insight to reformulating the optimization is that
the problem can be formed as an equivalent QP, but with
the waypoint positions and derivatives as the decision vari-
ables instead of the polynomial coefficients. Constructing the
problem this way both removes the equality constraints and
uses decision variables bounded to a much smaller range.
This change of variable has actually already been computed
in (13). The A matrix in this equality constraint converts the
coefficients c to the positions and derivatives, b. However,
these are expressed in terms of the flat outputs, and it is
more desirable to express these parameters in terms of the
state d. Using d as the decision variable, the cost function
can be reformulated as the total cost J :

J = dT CA�T QA�1CT d, (14)

where C is a selector matrix of ones and zeros which can
rearrange the order the decision variables in the vector d.
This derivation of this cost function is identical to its original
derivation for quadrotors [10]. The key difference is that
quadrotors are trivially differentially flat, in that their state
variables are the flat outputs. This is why the transformation
matrix C can be only zeros and ones. For ballbot, or
any other nontrivially flat system, another transformation

matrix is required to go from polynomial coefficients to state
variables. From (4), the necessary transformation M can be
found as:

Ac
s

= b, Ac
s

= Md (15)
c
s

= A�1Md) dT MT A�T

= cT

s

. (16)

where M is a block diagonal matrix with matrices m along
the diagonal:

m =

2

6664

�
1

0 �
2

0 0

0 �
1

0 �
2

0

0 0 g 0 0

0 0 0 g 0

0 0 0 0 g

3

7775
. (17)

M is now a matrix that transforms flat outputs and deriva-
tives: b = [S ˙S ¨SS(3)S(3)

]

T to state variables: d = [✓ ˙✓� ˙�¨�]

T .
It is worth noting that A in (15) and its inverse can be solved
in closed form as a function of the segment time. With this
new transformation M , (14) becomes

J = dT Rd, (18)

where R is

R = CMT A�T QA�1MCT . (19)

This matrix can be partitioned into fixed and free derivatives
along with the vector of ballbot states d [10]:

R =


R

FF

R
FP

R
PF

R
PP

�
, d =


d

F

d
P

�
. (20)

d
f

is the vector of fixed derivatives. Formulated as such, the
optimal free waypoint derivatives, d⇤

p

, can be solved for as:

d⇤
p

= �R�1

PP

RT

FP

d
F

(21)

This unconstrained formulation is both more numerically
stable and of lower dimension than the constrained formu-
lation. A comparison to the constrained method can be seen
in Fig. 3(c). This trajectory optimizes over 44 waypoints.
The first and last waypoints are fully constrained as they
are set to be at rest with zero velocity and lean angle. The
42 interior waypoints are constrained only in position, while
the other derivatives are free to be optimized. This example
was solved in MATLAB using gaussian elimination on an
Intel Core I7 machine in 1.1 ms. Conversely, the constrained
system in Fig. 3(a) took 76 ms and still diverged. The
unconstrained method is also very stable, with trajectories
up to 250 waypoints being tested.

D. Polynomial Segment Time-Allocation Optimization
Minimizing energy of a series of polynomial segments, as

shown in the previous section, relies on knowing how much
time each segment should take. From (10), it is clear that t

f

and t
0

must be known for each polynomial segment before
constructing the T matrices. The choice of these segment
switching times is very important, as poorly allocated times
will impose unwanted constraints on the robot motion, as
shown in Fig. 4. In this figure, a trajectory is generated
which is constrained to take a total of 5 s and pass through
the 5 yellow waypoints, starting and ending at rest. The
blue path is the trajectory generated by naively choosing

X(m)

Y
(m

)

5 10 15

2

4

6

8

10

12

14

16

(a) Interior Point QP Solver solu-
tion for the constrained problem

X(m)

Y
(m

)

9 10 11 12
12.5

13

13.5

14

14.5

15

15.5

16

16.5

(b) Magnified view of orange box
from (a)

X(m)

Y
(m

)

5 10 15

2

4

6

8

10

12

14

16

(c) Unconstrained QP solved as a
linear system

X(m)

Y
(m

)

2 3 4 5 6
13.5

14

14.5

15

15.5

16

16.5

17

17.5

(d) Magnified view of orange box
from (c)

Fig. 3. Optimization of the same kinematic path (shown in red) using
different techniques. Free space is shown in black, obstacles in white, and
obstacle inflation in gray. Because this trajectory has 44 waypoints, the
unconstrained optimization shown in (c) and (d) is the only successful
method yielding a feasible dynamic trajectory.

equal times, 1.25 s, for each segment. The red path shows
a trajectory with times that were optimized by iteratively
solving the QP and using gradient descent to yield a locally
minimal energy [10]. The green dashed path uses no time
optimization, but instead allocates time based on a heuristic.
This heuristic calculates times to satisfy the dynamics of
a constant acceleration system with a capped maximum
velocity. The following algorithm details the time allocation
for the polynomial segment times, t

i

. The algorith uses v
m

, a
specified maximum velocity; a, the specified acceleration; d

s

the polynomial segment euclidian distance; v
0

the segment’s
inital velocity; and v

f

, the segment’s final velocity.

Algorithm 1 Time-Allocation Heuristic
Assign waypoint velocites from kinematic plan
for all segments do

t
1

(|v
m

� v
0

|/a
d
1

(((v
0

+ v
m

)/2) ⇤ t
1

t
2

(|v
m

� v
f

|/a
d
2

(((v
f

+ v
m

)/2) ⇤ t
1

if d
1

+ d
2

< d
s

then

t
m

((d
s

� (d
1

+ d
2

))/v
m

t
i

(t
1

+ t
m

+ t
2

else

t
i

(t
1

+ t
2

end if

end for

The unoptimized trajectory in Fig. 4 (blue) requires a
maximal lean angle of 4.07

�, whereas the optimized tra-
jectory (red) requires only a 1.63

� maximum lean angle.
For the ballbot, this corresponds to an instantaneous accel-

0 0.25 0.5 0.75 1

0

0.25

0.5

X(m)

Y
(m

)

Fig. 4. Comparison of the optimized trajectories using different methods of
time allocation. Blue - Equal times (naive), Red - Optimized times, Green
Dashed - Heuristic

eration of .82 and .33 m/s2, respectively. Note also that
these trajectories take the same total amount of time. The
trajectory which has times allocated by the heuristic has
a maximum lean angle of 1.67

�, slightly more than the
optimized trajectory. Although the optimized trajectory has
lower required acceleration, using the heuristic has two major
advantages: it requires no extra optimization step, and it is
not susceptible to local minima.

IV. PLANNING TRAJECTORIES IN THE REAL
WORLD

A. Planning with Obstacles
As discussed in the previous section, a feasible trajectory

for the ballbot can be generated from a series of waypoints;
however, this does not take obstacles into account. To this
end, a graph search planner is used to generate a kinematic,
obstacle-free trajectory. That trajectory is then subsampled
into waypoints to optimize a minimum crackle trajectory
which is dynamically feasible by the strategy presented in
the previous section. An example of this can be seen in
Fig. 3(c) and more closely in Fig. 3(d). The red path is
a kinematically feasible two-dimensional path generated by
A*, and the green trajectory is dynamically feasible.

This method is very powerful, as the graph search is done
in a two dimensional space, instead of the 8 dimensional full
state space. Fig. 3(c) shows obstacles as white grid cells, with
an inflation shown as gray cells. To ensure that the deviation
of the dynamically feasible path from the kinematic path
does not hit an obstacle, the obstacles must be inflated by
approximately the distance between subsampled waypoints.

B. Replanning with Localization Updates
As will be discussed in Section V-A, the ballbot uses a 30

m laser scanner and Hector Slam [11] as a localization solu-
tion. This localization information allows for a much better
estimate of the robot state than odometry alone. As such,
this estimate or a combination of localization and odometry
information are usually used for feedback control, as in prior
work with the ballbot [5]. Unfortunately, localization systems
can yield discontinuous estimates, especially those based on
scanmatching.

This method takes a different approach which can utilize
localization information immediately while using only con-
tinuous odometry for feedback control. Instead of filtering
the localization information, a single polynomial trajectory is
planned from the current state as estimated from localization

to the global trajectory at some time in the future. This
trajectory is then executed by a feedback controller using
only odometry information, which is always continuous. This
trajectory is then replanned to take into account updated
localization. Generating this intermediate trajectory leverages
the ability to compute a single polynomial trajectory in less
than a millisecond. Executing feedback control with only
odometry information yields another benefit: the planning
and control can be decoupled. This is useful in the case of
the ballbot because balancing control is done on a real-time
computer, while planning and localization are run on a more
standard, high-level computer. An example of this method in
action can be seen in Fig. 5.

C. Planning Safe Trajectories

In the case of localization failure or a total high-level
system failure, it is desirable for the robot to stay balanced.
The previous section introduced the ability to decouple the
system in planning and control. This decoupling provides
another benefit because if the real-time control system can
bring the robot to rest by itself in the event of a high-level
failure, the robot is much safer. To this end, the proposed
trajectory generation method was designed to only ever send
1.2 s of the desired trajectory to the real time system,
followed by another trajectory which brings the system to
rest, as in [6]. As long as everything works properly, the
high-level replanner sends another 1.2 s trajectory before
the previously sent trajectory has been completed. If the
high-level planning fails for any reason or generates a plan
that is infeasible, the low-level system reverts to the backup
trajectory and comes to rest. This value of 1.2 s was chosen
empirically trading off safety and computational load. An
example of this backup trajectory method can be seen in the
accompanying video.

V. RESULTS

A. Experimental Setup

Trajectories were tested extensively over 60 trials, in a
5 m ⇥ 8 m room in the presence of static and dynamic
obstacles. Average velocities were varied from .3 m/s to
.7 m/s. Ten experiments tested the stability of generating
long trajectories. These trajectories were all over 20 m and
traversed rooms and hallways with floors of carpet and
tile. The timing of the trajectory segments were allocated
using the heuristic method discussed in Section III-D. Plans
were checked once per second for continued feasibility. If
an obstacle had invalidated the planned trajectory, a new
trajectory was generated. New goals were also commanded
to the robot while already executing a trajectory to assess
the ability to smoothly transition to a new trajectory for a
new goal.

The robot was controlled using an inner loop, modified
PID balancer and an outer loop trajectory tracking controller,
as in prior work [4]. The control was modified slightly to
use feedback on the center of mass position instead of the
ball position in the outer loop. This was motivated by the
feedback linearization presented by the flat outputs.

51 51.5 52 52.5 53 53.5 54 54.5
−16

−15.5

−15

−14.5

−14

−13.5

Time(s)

B
a

ll
X

 P
o

si
tio

n
(m

)

Replanned Trajectory
Actual Ball Position

(a) Ball X Position tracking over 2 m in 3 s

51 51.5 52 52.5 53 53.5 54 54.5
−0.5

−0.25

0

0.25

0.5

Time(s)

X
 A

n
g

le
(d

e
g

)

Replanned Trajectory
Desired Trajectory
Actual Lean Angle

(b) X Lean Angle tracking. The planned trajectory is in
red, the controller output in green, and the actual angle
in black

51 51.5 52 52.5 53 53.5 54 54.5

9.7

9.8

9.9

Time(s)

B
a
ll

Y
 P

o
si

tio
n
(m

)

Replanned Trajectory
Actual Ball Position

(c) Y Position tracking .25 ms in 3 s. This portion of
the total path was primarily moving in the x direction.

51 51.5 52 52.5 53 53.5 54 54.5
−0.5

−0.25

0

0.25

0.5

Time(s)

Y
 A

n
g

le
(d

e
g

)

Replanned Trajectory
Desired Trajectory
Actual Lean Angle

(d) Y Lean Angle tracking. The planned trajectory is in
red, the controller output in green, and the actual angle
in black

Fig. 5. Planned and actual state data from an experiment with the ballbot.
The entire experiment had a duration of 90 s and traversed over 20 m
through 2 rooms and a hallway with obstacles. Seconds 51 through 55 are
shown to highlight position and lean angle tracking along with 1.2 s period
replanning strategy. The replanning that occurs at t = 52 s has relatively
poor localization, but the replannned trajectory at 53.2 s returns to the global
trajectory very adequately.

B. Experimental Results

The ballbot was able to successfully navigate a building
in the presence of dynamic obstacles at speeds up to .7 m/s.
Fully dynamic, feasible trajectories up to 25 m long were
planned in less than 50 ms. A piece of one such trajectory is
shown in Fig. 5, with the full trajectory shown in Fig. 6.
This particular trajectory was 90 s long, moving through
2 doorways and a hallway at .6 m/s. Fig. 5 highlights the
replanning for localization, as well as the tracking accuracy
of the system.

Fig. 5(a) shows the ball position tracking of the trajectory.
As this particular segment of the trajectory was mostly in
the x direction, over the 3 seconds shown, the ballbot moved
almost 2 meters. As such, the difference between the desired
trajectory and the actual performance is almost indistinguish-
able at this scale. Shown in Fig. 5(b) is lean angle in the x

direction. Replanning to account for localization occurred at
t = 52 s and 53.2 s. Fig. 5(c) shows the tracking in the y
direction. Note the scale, as this figure shows only .25 m of
travel. This figure clearly shows that the replanning events
use the state of the ballbot, both lean angle and position,
as the initial conditions. The replanning event at t = 52
s actually uses a poor localization estimate, off by .05 m.
As such, it looks like the ballbot is .05 m from where it
should be in the y direction, but cannot compensate by the
time the next trajectory is planned. By the time the next
replanned trajectory is generated at t = 53.2, the localization
has returned to a better estimate, as is clearly seen from the
smoothness and good tracking of the next replanned segment.
Because this method of trajectory generation is so fast,

Fig. 6. Top view of ballbot executing a 25 m trajectory through a building.
The desired path is shown in green; laser scanner returns are shown as red
dots; Inflated obstacles are shown in blue, and the current ball position is
shown as a yellow dot.

generating plans in less than 50 ms, it is very appropriate for
dynamically replanning in the presence of moving obstacles.
This ability is shown in Fig. 7. Fig. 7(a) shows the initial
situation, where the ballbot generates a trajectory shown in
green. At four seconds into the experiment, a box is placed
directly in the path of the robot, and the robot replans a
trajectory to its right, as seen in Fig. 7(c). It is important
to note that all planned trajectories begin with the ballbot’s
current state as the initial condition. As such, the robot
smoothly transitions from an old trajectory to a new one.
Lastly, the second path of the ballbot is blocked by a person,
as shown in Fig. 7(e).

VI. CONCLUSIONS

A method of generating dynamically feasible trajectories
for a ballbot in the presence of obstacles has been presented.
This method has been shown to produce smooth motions,
even over very large distances. The generation of these
paths is also sufficiently fast for replanning when faced with
moving obstacles, and replanning to account for localization
information. Trajectories produced have been experimentally
verified on the ballbot at speeds up to .7 m/s. This is
a significant speed for a person sized robot, matched by
very few other systems. The method presented also always
ensures both a smooth trajectory and smooth transitions
between segments. Furthermore, to our knowledge, this is
first time a method has successfully enabled a ballbot to
navigate unstructured environments at such speeds or dis-
tances. This advancement provides a real, tractable solution
to autonomous ballbot indoor navigation.

(a) The ballbot initially starting at rest at
t0 = 0 s. A straight path to the goal in the
lower right is planned.

(b) Overhead view of (a)

(c) At t1 = 4 s, a box is placed blocking
the straight line path, and the ballbot re-
plans smoothly to go around the obstacles.

(d) Overhead view of (c)

(e) At t2 = 11 s, a person block the path
of the ballbot again

(f) Overhead view of (e)

Fig. 7. The ballbot navigates a room in the presence of dynamic obstacles.
The planned trajectory is shown in green; laser scan, red; Inflated obstacles,
blue, and the current ball position, yellow

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office en-
vironment,” in International Conference on Robotics and Automation,
05/2010 2010.

[2] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” J. ACM, vol. 40, no. 5, pp. 1048–1066, Nov. 1993.

[3] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on,
2013, pp. 5054–5061.

[4] U. Nagarajan, B. Kim, and R. Hollis, “Planning in high-dimensional
shape space for a single-wheeled balancing mobile robot with arms,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2012, pp. 130–135.

[5] U. Nagarajan, G. Kantor, and R. Hollis, “Trajectory planning and con-
trol of an underactuated dynamically stable single spherical wheeled
mobile robot,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, may 2009, pp. 3743 –3748.

[6] M. Shomin and R. Hollis, “Differentially flat trajectory generation
for a dynamically stable mobile robot,” in 2013 IEEE International
Conference on Robotics and Automation, Karlsruhe, Germany, May
2013, pp. 4452–4457.

[7] M. Fliess, J. Lévine, and P. Rouchon, “Flatness and defect of nonlinear
systems: Introductory theory and examples,” International Journal of
Control, vol. 61, pp. 1327–1361, 1995.

[8] H. Sira-Ramı́rez and S. Agrawal, Differentially Flat Systems, ser.
Control Engineering. Taylor & Francis, 2004.

[9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

[10] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
International Symposium on Robotics Research, Singapore, Dec. 2013.

[11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011.

