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Abstract

A promising approach to enabling the rapid deployment and recon-
Sfiguration of automated assembly systems is to make use of coop-
erating, modular, robust robotic agents. Over the past 5 years, the
authors have been constructing just such a system suitable for assem-
bly of high-precision, high-value products. Within this environment,
each robotic agent executes its own program, coordinating its activ-
ity with that of its peers to produce globally cooperative precision
behavior. To simplify the problems associated with deploying such
systems, each agent adheres to a strict notion of modularity, both
physically and computationally. The intent is to provide an archi-
tecture within which it is straightforward to specify strategies for the
robust execution of potentially complex and fragile cooperative be-
haviors. The underlying behaviors use a runtime environment that
includes tools to automatically sequence the activities of an agent.
Taken together, these abstractions enable a designer to rapidly and
effectively describe the high-level behavior of a collection of agents
while relying on a set of formally correct control strategies to prop-
erly execute and sequence the necessary continuous behaviors.

KEY WORDS—robotics, automated assembly, distributed
systems, sensor-based control

1. Introduction

Since the introduction of programmable industrial robots at
the end of the 1960s and beginning of the 1970s, a significant
industry based on these machines developed steadily to a point
in the mid-1980s, when it was poised for (and many predicted
and expected) an explosion of huge proportions. This explo-
sion failed to happen as a robotics backlash took hold, with
the strong perception held by many that programmable ma-
chines did not, and would not, live up to the high expectations
and demands held by their users.
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While the interest in robotics by the industrial sector
waned, it continued to grow tremendously within the aca-
demic community, resulting in the aggressive investigation of
many difficult and fundamental problem areas. The primary
research emphasis has been on key component technologies
(e.g., kinematics, dynamics, control, 3-D vision, planning,
etc.) but only rarely on complete systems, and the integration
of the vast majority of these results into industrial practice has
been slow.

One result of this history, in our opinion, is that academic
robotics researchers—perhaps as a result of the difficulties
of technology transfer to industry—have turned their backs
on industrial robotics in favor of working in other, more ex-
ploratory, areas such as mobile, field, medical, space, and
service robotics. Meanwhile, worldwide sales of industrial
robots has steadily grown during the past decade. To enable
further growth, there must be significant changes in the way
robotic systems are deployed in manufacturing environments.
It would appear that there are now significant opportunities
for applying increased intelligence and autonomy to industrial
robot systems. This observation derives from several factors,
including the following:

* increasing demand for ever smaller and more com-
plex products whose product lifetimes are constantly
shortening;

* the increasing need to remove humans from the im-
mediate vicinity of the manufacturing process both
because of product scale/precision and cleanliness
requirements;

the relatively recent widespread and ubiquitous avail-
ability of significant computing power at reasonable
COSsts;

« the explosive deployment of high-performance infor-
mation and communications technology—most no-
tably in the application of local and wide-area network-
ing within the manufacturing arena.

819

Downloaded from hltpi/fijr.sagepub.com at CARNEGIE MELLON UNIV LIBRARY on October 27, 2009




820 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2001

1.1. Practical Difficulties with Automated Manufacturing
Systems

The fundamental problem with modern robotic manufactur-
ing systems is that the individual components (robots, part
feeders, conveyor systems, etc.) are generally designed as
stand-alone devices. As a result, little or no explicit effort is
dedicated to enabling the integration of these factory compo-
nents into a complete manufacturing system. Similarly, infor-
mation about the design of most complete systems is scarce,
as there are few incentives for system integrators to document
their work, and it is difficult to extract durable truths from
case studies. There remain prohibitively high economic and
technical costs associated with the factory integration process,
which in turn severely limit the utilization of robotic elements
in many practical applications.

Meanwhile, work on programming robotic assembly sys-
tems has progressed at both the task level (e.g., “place part
A on part B”) and at the manipulator level (e.g., “move joint
three 10.15 inches, close gripper, etc.”). These efforts are,
in general, based on standard computer languages, with the
addition of special primitives, constructs, and libraries to sup-
port the physical control of a robot (Lozano-Perez 1983). The
resulting languages are designed to enable the effective pro-
gramming of a single robot and do not inherently support
distributed automation systems. More abstract programming
models have recently appeared (Berry and Gonthier 1992;
Harrigan 1993), but typically these are either task or process
based and are applied to the programming of statically con-
figured work cells (which might contain multiple robots). To
date, these task-level systems have not moved beyond labo-
ratory study, while the more basic manipulator-level systems,
despite the enormous programming complexities required to
produce functional behavior, have become widely accepted.

1.2. Related Efforts

A number of academic and industrial groups have attempted
to provide partial solutions to these fundamental problems
over the past decade.

A leading-edge benchmark, which attempts to address
some of these issues, is Sony’s SMART flexible assembly
line. It makes use of SCARA robots equipped with index-
ing multiple grippers and modular product and part transport
systems to simplify the mechanical problems of factory recon-
figuration. Unfortunately, the individual modules are phys-
ically large, and the problems of programming and tuning a
complete factory system are still daunting.

A key study was the DARPA microfactory demonstration
(Foslien and Nibbe 1990), developed as part of the Defense
Department’s Intelligent Task Automation program. This
work emphasized operation in unstructured environments,
recognition and grasping of overlapping parts, semiautomatic
planning, and geometric reasoning. The system that resulted

used parts kitting and sensor-moderated motion to assemble
a precision microswitch. While meeting many objectives,
the system required 18 minutes to complete the microswitch
assembly task.

A recent significant trend is the notion of programming
and operating robots over the Internet. For example, a con-
cept of virtual laboratories was recently demonstrated (Gertz
etal. 1994), showing that a robot in one laboratory can be pro-
grammed and controlled from another laboratory thousands of
miles away. In another case, exploration and tele-gardening
(Goldberg et al. 1995) were demonstrated. Both of these stud-
ies show that it is now possible to allow meaningful remote
(Internet-based) interaction between a robot and a program-
mer or operator. However, neither demonstrates the level of
expressiveness required to undertake a significant practical
manufacturing task.

Sandia National Laboratory has developed its Agile Manu-
facturing Prototyping System (AMPS), composed of robotic
cells supplied by various vendors.! Simultaneously, indus-
trial robot producers have begun to service the demand for
increased flexibility and precision. Adept has developed a
concept of “rapid deployment automation” (Craig 1997) that
embraces key elements of modularity and offline program-
ming. Megamation and Yaskawa have produced systems of
small, modular, easily programmed robots capable of moder-
ately precise assembly.

Structurally more similar to our approach is the notion of
Holonic Manufacturing Systems, which would be composed
of “holons,” wherein each holon is an active information-
processing entity (Christensen 1994; Brussel et al. 1999).
Sometimes a holon is associated with a specific computer and
mechanism (e.g., a specific robot holon); sometimes a holon
is associated with a specific physical entity, but its processing
moves from computer to computer (a holon that represents
a product); and sometimes a holon can be associated purely
with an abstract expertise (a holon that represents a resource
management expert). All of these holons would negotiate
with each other within an all-encompassing “holarchy” that
attempts to model the heterarchical and hierarchical aspects
of robust biological organizations (Koestler 1967). Holonic
systems are essentially a particularly ambitious class of agent-
based manufacturing systems. They seek to encompass the
entire manufacturing enterprise, from human resource man-
agement to putting parts together.

2. The Agile Assembly Architecture

Our vision of an agile manufacturing system is one that pro-
vides a large pallet of modular robotic processing and product
transport systems from a wide variety of vendors, with each
module presenting a standard mechanical, computational,
and algorithmic interface enabling their simple and rapid

1. See http://www.sandia.gov/istcc/RMSEL.html.
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integration (both physical and programmatic) into a complete
factory system. In contrast to much academic research on
agile manufacturing systems, we are not striving to provide
a “vniversal assembly machine” but rather wish to adhere
to the industrially accepted model of flow-through (assem-
bly line) processing while providing for the rapid deployment
and reconfiguration of such systems. We foresee this being
achieved through the use of compact, mechanically simple el-
ements whose customizable combined behaviors provide the
specific complex capabilities required for a specific applica-
tion. Furthermore, we do not foresee these modules being
used to form a “lights-out” factory, but rather we expect them
to act smoothly in concert with humans, serving as highly
capable and intelligent tools for their operators.

In our laboratory,> we have developed new hardware and
software technologies along with programming and integra-
tion strategies for just such a class of automated assembly sys-
tem. This new class of automation systems is suitable for the
manufacturing of a wide range of precision high-value prod-
ucts such as magnetic storage devices, palm-top and wear-
able computers, and other high-density equipment (Hollis and
Quaid 1995). Our approach draws extensively on high-speed,
wide-area communication and intensive distributed computa-
tion. The Agile Assembly Architecture (AAA), as we have
termed this system, supports the creation of miniature man-
ufacturing systems (minifactories), built from small modular
robotic components, which will occupy drastically less floor
space than today’s automated assembly lines. Our goals are
to reduce assembly system changeover times, facilitate ge-
ographically distributed design and deployment of assembly
systems, and increase product quality levels.

We are developing AAA as a distributed system of tightly
integrated mechanical and computational robotic modules en-
dowed not only with information about their own capabilities
but also with the ability to appreciate their role in the fac-
tory as a whole and negotiate with their peers to participate
in flexible factory-level cooperation (Rizzi, Gowdy, and Hol-
lis 1997). A unified interface tool will allow a user to select
and order these mechanisms over the Internet and to assem-
ble, program, and monitor them in both a simulated factory
environment and the real factory environment.

AAA relies on factory-wide standard procedures and pro-
tocols and well-structured autonomy to simplify the process
of designing and programming high-precision distributed as-
sembly systems. The architecture makes use of agents’ self-
knowledge and ability to explore their environments to make
the transition between simulation and reality as painless and
seamless as possible.

Our sample instantiation of these ideas is a modular table-
top factory that we refer to as a minifactory (see Fig. 1). The
key technical aspects to note about this system include the use
of distributed low degree-of-freedom (DOF) robotic agents>
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Fig. 1. A segment of a typical minifactory.

and the integration of product transport and manipulation sub-
systems. The entire system is composed of compact elements
with standardized mechanical and electrical interconnects, al-
lowing for the rapid setup and adjustment of a factory system.

The minifactory incorporates planar robot couriers that
travel on connected tabletop platen surfaces. These robots are
derived from planar linear motors that float on air bearings and
translate along the platens in two directions with micron-level
precision. Other devices, including 2-DOF overhead manip-
ulators, are mounted on modular bridges above the platens
(see Fig. 1). The couriers are responsible for both carrying
the product subassemblies from one overhead agent to another
and cooperating with the overhead agents to execute assembly
operations. Limiting the robots to 2 DOFs has advantages in
terms of modularity, reliability, and performance (Quaid and
Hollis 1996) but allows the minifactory to perform 4-DOF
assembly tasks through the use of robot cooperation. Each
low-DOF device has integrated high-performance computing
resources and serves as an agent in the AAA context. This
eliminates the need for central resources that would degrade
the modularity and scalability of the system.

Adding or deleting functionality to a minifactory is rela-
tively straightforward. New agents can be added to the system
almost anywhere (imagine new overhead agents or couriers
inserted into Fig. 1), while removing agents has little or no
effect on the existing ones. Central to this model of factory
integration is that a module’s internal functionality never be
subject to modification by a factory designer but rather only
by the module’s vendor. Adhering to this stricture ensures
that modularity, and hence the system’s inherent agility, will
not be broken.

Because each factory agent is fairly simple and limited in
functionality, the cost of entry for module suppliers is kept

2. See http://www.cs.cmu.edu/~mslL.
3. By agent, we explicitly mean a mechanically, computationally, and algo-

rithmically modular manufacturing entity (e.g., robot) capable of both com-
munication and physical interaction with its peers.
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low. In this way, each modular component can employ the
latest and best technology from that particular company. We
argue that this sort of approach can respond more quickly to
changing market opportunities than can today’s state-of-the-
art modular systems.

2.1. Underlying Challenges

A fundamental component of our long-term goal is to elevate
the design of antomated assembly systems from the detailed
technical problems associated with designing and integrat-
ing independent mechanisms to the more salient problem of
designing the factory as a whole. We see this as a complemen-
tary effort to that provided by the industrial engineering and
operations research communities, but it can provide a natu-
ral mechanism for the widespread application of new factory
design methodologies. Ideally, the collections of machines
that follow the framework presented here will form a natural
template onto which the more abstract ideas of factory design
and optimization can be applied.

From our perspective, several key barriers currently stand
between current best practice and a more agile and open man-
ufacturing infrastructure. Fundamentally, these barriers all
relate to the need for standard mechanisms to support inter-
action between agents, designers attempting to integrate the
agents into a system, programmers developing control soft-
ware for a factory involving the agents, and operators whose
task is to monitor performance and provide support when an
agent is unable to cope with its environment.

As mentioned in Section 1, the current practice in the
robotics and automation community is to focus on the en-
gineering of individual robots and mechanisms, with little
or no consideration for how they are later integrated into a
complete factory system. Only by designing robotic agents
that are explicitly prepared to participate in a larger factory
system can we begin to provide the types of tools necessary
to move toward fundamentally more useful systems of ma-
chines. This represents what we see to be an important goal
of the robotics field: the construction of mechanisms capable
of both physical and “social” interaction. Physical manipula-
tion has been the province of both the academic and industrial
robotics communities from their inception, while social inter-
action has been an academic goal (Minsky 1986) that has
produced several novel and interesting systems (Brooks and
Stein 1994; Lenat 1995). There have been, however, few
practical applications for these systems.

We believe our efforts to design rapidly reconfigurable and
user-friendly factories represents a modest step toward achiev-
ing this goal. The scope of social interaction has been explic-
itly limited to two well-defined domains: interagent interac-
tion for factory coordination and interaction between agents
and the factory personnel. Given even this limited scope, the
details underlying the definition of these agent interfaces are
not obvious and comprise a significant portion of the AAA.

2.1.1. Factory Interaction

The definition of a suitable “machine language,” for interagent
communication is a central issue in enabling the type of inter-
action under discussion between both multiple robotic agents
and humans and agents. For interagent communication, the
basic requirements include the following.

Extensibility. Whatever the actual format of messages, the
underlying media must efficiently allow for the introduction
of not only new message formats but also the negotiation of
completely separate communication modalities. In principle,
these allow the natural growth and development of new meth-
ods for interagent coordination, and with responsible classifi-
cation of which protocols are to be considered “required” and
which are “optional” for an agent, it is reasonable to expect
long-term compatibility through the use of the required basic
protocols.

Real-time coordination. Sufficient communications capabil-
ity (enough bandwidth with sufficiently low latency) is essen-
tial to allow the tight coupling and integration of agents that
are incapable of performing complete manufacturing tasks
in isolation. In the sample system described in Section 4,
it is clear that there are significant advantages both in terms
of flexibility and simplicity inherent in supporting such dis-
tributed mechanisms. This issue is mitigated by the fact that
in general, an individual member of a factory is likely to only
interact with a well-defined “neighborhood” of peers—for
example, an insertion mechanism need only perform precise
coordination with a part feeder (providing the part to insert)
and with a product transport mechanism (presenting the sub-
assembly to be operated on)—greatly limiting the scope of
high-performance communication by nature of its locality.

Factory communication. Conversely, there is a need to pro-
vide a standard means for factory-wide control and monitor-
ing and hence the need for a standard interface to join every
robotic agent in a factory together with each other and an ar-
bitrary number of control and monitoring workstations. The
intent is to provide a common medium and basic interchange
format for the most rudimentary forms of factory control while
providing a means by which agents can negotiate for the use of
more application-specific interchange formats. By requiring
every element of a factory system to “understand” this basic
level of interaction, we strive to ensure that each and every
agent is capable of participating in the factory at a minimum
level.

2.1.2. Integrated Design, Simulation, and Evaluation Tools

Not only is it necessary to require a facility for interaction be-
tween agents, but it is equally important to support interaction
between humans acting as factory designers and the agents.
In a traditional design process, there are three major classes
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of interaction between the designer and a component under
consideration.

* Preliminary selection: Initial evaluation of a manufac-
turing component for its suitability to a problem.

* Detailed evaluation: Iterative validation and discard of
candidate solutions and components based on analysis,
simulation, and mock-up of proposed designs.

* Integration and refinement: Detailed analysis, design,
construction, and test of a working system.

While the above distinctions are somewhat arbitrary, they
highlight fundamentally different forms of inquiry performed
on candidate components by a designer and provide a model
under which we can explore the interactions necessary to re-
duce the designers’ uncertainty about the factory system they
are working on.

Given the widespread acceptance and rapid development of
high-performance computation and communication systems,
particularly as embodied in the Internet, we have sought the
integration of such capabilities with robotic agents to enable
new relationships between the designer and the component.
In stage 1 of the design process, when traditionally decisions
would be made based primarily on vendor-provided catalogs,
it now becomes possible for the designers (or some agent
acting on their behalf) to directly interrogate an actual mech-
anism (probably at a vendor’s facility) for relevant properties
(Gowdy and Rizzi 1999). There are myriad options for ex-
actly what remote entity answers such queries, depending on
the nature of the component under scrutiny. In the case of
“brainless” components, this would be similar to a catalog
search, but for full-fledged factory agents, the designer could
interact directly with the specific agent under consideration,
potentially providing a significantly more accurate represen-
tation of the actual mechanism and its capabilities.

The implications of this model on phase 2 of the design
process are more significant. It now becomes possible for the
component under evaluation to provide a number of different
“renderings” of its physical and behavioral models for use
by a designer. With the careful integration of tools for either
retrieving downloadable representations from factory com-
ponents or remotely involving the component in a distributed
simulation or analysis process, it becomes possible for the
item under review to provide a model with an appropriate
level of fidelity to its actual performance. It is easy to imag-
ine a broad range of models ranging from trivial kinematic
representations to highly detailed physics-based distributed
simulations or even remote experimental environments being
made available to a designer through a single and consistent
set of design and simulation tools capable of allowing the
construction and interrogation of a highly accurate “virtual”
factory identical to the design under evaluation.

Finally, in phase 3, as a design is refined and physical
experiments are undertaken, it is through these same tools
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that the designer will continue to interact with the evolving
factory design. The ultimate goal is the truly seamless tran-
sition from factory simulation to operation, but with enough
expressiveness and flexibility in the underlying components
and representations so as not to unduly constrain the behavior
and performance of the final system.

2.1.3. Programming Interaction

The key goal in simplifying human-machine interaction is
one of providing a simple and natural language for specifying
complete machine behavior. Further complicating the prob-
lem is that given a large collection of disparate agents, it is
necessary to distribute the “factory program” among the var-
ious agents. In contrast to current practice, however, it is also
necessary to provide tools and highly expressive, yet conve-
nient, languages that aid a factory programmer in developing
and debugging the agent-level programs that instantiate a spe-
cific solution to a manufacturing problem. Most of our effort
in this domain is focused on understanding and developing
appropriate representations for machine behavior in a factory
setting, as detailed in Section 3.2.

2.1.4. Operator Interaction

Finally, as we do not see the near-term future of automated
manufacturing to be “lights out,” it is important to consider the
role played by factory operators and their interaction with the
agents that make up the factory. Predominantly, we see opera-
tors serving as aids to the factory, acting to help agents recover
from and avoid situations that they are unable to manage in
an automatic manner. This includes such mundane tasks as
managing factory supplies by refilling part hoppers and re-
moving finished products, possibly for additional processing
by a more traditional factory system. Furthermore, we fore-
see operators being called to the aid of agents that recognize
factory difficulties that they are unable to recover from. This
form of interaction should include the ability of an agent to
notify an operator of the difficulty, allowing the operator to
remotely (from across the room or facility) interact with the
agent in question and its peers via a set of agent “front pan-
els” or “dashboards” (remotely rendered presentations of the
agent’s status) to diagnose the problem and choose a correc-
tive course of action.

3. Instantiation

Minifactory is our instantiation of the concepts of AAA.
A minifactory consists of a potentially large collection of me-
chanically, computationally, and algorithmically distributed
agents, with each element in this collection adhering to the
guidelines for modularity imposed by AAA.

The most obvious departure from traditional automation
systems and one of the most obvious embodiments of our
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philosophy of factory-level integration can be seen in our
choice to integrate product transfer and local manipulation.
As such, we have eschewed the traditional use of SCARA
manipulators coupled with part conveyor systems and local
fixtures. Alternatively, as depicted in Figure 1, minifactory
makes use of 2-DOF manipulators and 2-DOF planar couriers
moving over a high-precision platen surface. The couriers are
thus responsible both for product transport within the factory
and for transiently forming cooperative 4-DOF manipulators
when they present subassemblies to stationary manipulators.

The manipulator agents are capable of vertical (z) and rota-
tional (8) movement. The z range of motion is approximately
125 mm and achieves a resolution of 2 um, while the range
of motion in 6 is approximately +270 degrees with a resolu-
tion of 0.0005 degrees (Brown et al. 2001). The manipulator
also incorporates a field-rate frame grabber for image acqui-
sition, and its end effector contains a monochrome camera,
a vacuum suction pickup device, and a force sensor. The re-
sult is a device capable of participating in a wide variety of
sensor-guided assembly operations (Brown et al. 2001).

The courier agents provide motion in the x, y plane—both
translation and a limited range of rotation. They incorporate a
magnetic position sensor device, providing 0.2 xm resolution
(1o) position measurements (Butler, Rizzi, and Hollis 1998)
and closed-loop position control (Quaid and Hollis 1998).

3.1. Runtime Coordination and Communication

Any element of a minifactory, be it a courier, a manipulator,
or some custom-designed module, must provide a minimal
level of capability to participate in the minifactory “society.”
Currently, there are three general classes of capability ev-
ery agent must reliably provide: basic trustworthiness, self-
initialization, and interagent coordination, the latter of which
includes facilities for resource negotiation.

3.1.1. Basic Trustworthiness

For an agent to be a successful member of a factory com-
munity, its peers must be able to trust it to reliably represent
itself. Practically, this manifests itself in the form of three
fundamental capabilities:

¢ All agents must advertise their basic capabilities and
the protocols they understand to their peers.

« Every agent must be capable of reporting its current
status and its understanding of its environment.

* Each agent must implement reliable and safe failure
detection and recovery schemes.

The first two of these requirements are essential to address
the issues of Section 2.1.1 and support the graceful coordina-
tion between minifactory components, their peers, and factory

monitoring tools. Furthermore, the ability to advertise capa-
bilities addresses the need for a predefined extensible protocol
suitable for the exchange of such information between agents.
The next two capabilities may well be the most important
and quite possibly the most difficult to precisely define and
implement. The assertions demand that agents be capable
of constantly monitoring the state of the factory available to
them. Furthermore, when an agent detects conditions outside
the norm, it must be capable of independently correcting the
aberration, negotiating with its peers to recover from the fault,
or broadcasting its inability to proceed, thus bringing the fac-
tory to an orderly stop. Although it is potentially difficult to
guarantee this level of capability in an arbitrary system, we
feel that through judicious use of a combination of traditional
Al reasoning (Musliner, Durfee, and Shin 1995) and reactive
behaviors (Burridge, Rizzi, and Koditschek 1999), it can be
achieved in the highly structured domain of the minifactory.

3.1.2. Factory Calibration/Initialization

Integral to the rapid deployment of an automation system is
the need for precise and reliable calibration and initialization
whenever a factory is “turned on.” There are three interrelated
tasks that must be collectively undertaken by the minifactory
components to successfully initialize a factory system. This
process begins with agents identifying their peers through the
use of messages broadcast to the factory at large. Following
this, couriers explore their environs to discover both the exact
geometry of the platen surfaces, as well as the positions of
any stationary agents within their range of motion (Butler
2000). Finally, through a careful exchange of this information
between agents, a complete map of the minifactory can be
constructed both in the agents and in a monitoring interface
tool.

3.1.3. Robotic Agent Coordination

Since individual elements of the minifactory are rarely capa-
ble of performing “useful” tasks alone, they each include stan-
dard mechanisms for orchestrating their coordination. Fortu-
nately, the locality of action performed by individual agents
provides a natural locality of communication and coordina-
tion. To help alleviate the problems associated with manually
coordinating the motions of all of these machines, we have
chosen to make use of a geometry reservation system. Under
this system, factory elements that are potential competitors for
a specific predefined segment of the factory floor (platens) are
grouped and required to negotiate for the use of that shared
resource. In principle, an individual agent may well be a
member of several different groups of agents sharing myr-
iad resources associated not only with physical resources but
potentially with more abstract factory goals. It is the neigh-
borhood groupings of agents that form the basic fabric for
cooperation between the elements of the factory system.
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The most fundamental form of this cooperation happens
whenever a courier and manipulator transiently form a 4-DOF
system to perform a part placement task. The mostbasic mode
for such cooperation takes the form of a virtual linkage be-
tween two agents, in which one agent is effectively slaved to
the state of the other, allowing for simple coordinated move-
ment. Other modes of cooperation include coordinated be-
havior changes and cooperative sensor-based action. Behav-
ior changes are used to encode the sequence of operations
necessary for a high-precision force-controlled insertion task
(e.g., manipulator exerts low vertical force while the courier
“finds” the hole, followed by the courier becoming compli-
ant while the manipulator exerts higher forces to perform the
insertion), as described in Section 4.2.

3.1.4. Communications Infrastructure

To support seamless cooperation between physically distinct
agents in the minifactory, each agent is equipped with two
network interface devices. These provide a scalable commu-
nications infrastructure throughout the minifactory system.
The first interface connects to a network, which carries non-
latency-critical information, such as user commands or infor-
mation destined for the factory interface tool. This network
uses standard IP protocols (Postel 1981). The second inter-
face connects to a network (AAA-Net), which carries real-
time information critical to the timely coordination of activity
between agents. This includes the coordination described in
Section 4 as well as other activities performed by multiple
agents transiently acting as a single machine.

Unlike the majority of industrial field networks
(e.g., Profibus (www.profibus.com), ControlNet Online
(www.controlnet.org), and WorldFIP (www.worldfip.org))
AAA-Net makes use of commercial off-the-shelf 100 Mbps
Ethernet hardware. This provides access to a wide variety
of low-cost and compact hardware options. The result is
(1) reduced investment in network infrastructure hardware,
(2) simplified installation and maintenance, and (3) direct
access to rapidly improving Ethernet technology. Unfortu-
nately, as a result of the CASM/CD media access rule used
by IEEE 802.3 Ethernets, the timing of packet delivery is not
deterministic. Thus, transmission latency cannot be abso-
lutely bounded, and packet delivery cannot even be guaran-
teed. However, our specification for agent coordination only
requires the delivery of 100 byte data packets at a maximum
rate of 1 kHz between agents that are physically collocated.
Given the maximum agent density, we can conservatively
bound the local bandwidth needs of the entire minifactory
system at roughly 10 Mbps. By choosing to use 100 Mbps
fast Ethernet technology (“IEEE-802.3u-1995 10” 1995), we
are able to provide an infrastructure that operates well below
its total capacity and thus minimizes the risk of packet colli-
sions and the associated delays and losses in communication.

Figure 2 depicts the communications infrastructure of the
minifactory system. As can be seen, both the AAA-Net and
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Fig. 2. Physical network structure.

the global IP network are configured as a chain of star topol-
ogy local networks, with a fast Ethernet repeater hub at the
center of each star and fast Ethernet switches forming the con-
nections between the local network segments. The repeater
hub allows each agent in a network segment to directly com-
municate with its immediate neighbors, while the frame relay
switches allow for arbitrary daisy chaining of the network,
overcoming the topology limitations that are fundamental to
fast Ethernet. The switches also serve to localize commu-
nications within the factory system by not transmitting data
packets destined for local agents to the remainder of the fac-
tory and by selectively transmitting those packets destined for
other network segments toward their destination, yielding a
scalable communications infrastructure.*

To facilitate a wide variety of local interactions between
agents, the AAA-Net protocol supports both a connection-
based guaranteed data transmission scheme as well as a con-
nectionless nonguaranteed data transmission scheme. These
services are not unlike the familiar TCP and UDP services
commonly used on IP networks, although they are signifi-
cantly simplified to improve performance in the highly struc-
tured network environment of AAA. Figure 3 depicts the
simplified header used by the AAA-Net protocol. For
nonguaranteed communication, the TYPE field in Figure 3b
is set appropriately, and the body of the message is placed
in the DATA field. The packet is then immediately placed
on the Ethernet network, with no effort made to guarantee
its delivery. This form of communication is appropriate for
the exchange of rapidly changing values, such as the velocity
commands sent from the manipulator to the courier described
in Section 4, where the loss or delay of a single packet is
insignificant since additional data will follow shortly.

This same packet format is also used to implement a
connection-based guaranteed delivery protocol. The packet

4. Note that in AAA/minifactory, the bulk of high-bandwidth communication
will be between agents that are attached to the same network segment, while
the remainder will involve agents that are typically attached to neighboring
segments (Rizzi, Gowdy, and Hollis 1997).
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TYPEis again set, and the fields marked as “reserved” are used
by the protocol to ensure reliable delivery of the data stream.
This protocol is appropriate for the exchange of larger, more
complex data structures or messages that will only be sent
once and whose receipt must be guaranteed.

In addition to the interagent cooperative behaviors demon-
strated in the remainder of this paper, we have independently
evaluated the performance of AAA-Net protocol and under-
lying network hardware (Kume and Rizzi 2001). A collection
of agents connected to the same network segment exchanged
messages, as shown at 1 kHz, and the round-trip time was
measured. To evaluate the impact of network contention, this
test was performed with one, two, and three pairs of agents
communicating simultaneously. Messages of both 100 and
1000 bytes in length were transmitted, and the results are
shown in Table 1. From our past experience, we estimate that
between 45% and 50% of the average round-trip time is spent
passing through the AAA-Net daemon process the four times
a message requires to make the complete circuit. The resuits
demonstrate the viability of using this relatively low-cost net-
work infrastructure to reliably perform real-time coordination
with under 1 ms latency.

3.2. User-Level Design, Programming, and Monitoring
Tools

In the absence of a centralized controller, a minifactory has
instead a centralized user interface tool capable of supporting
the design, programming, simulation, and runtime monitor-
ing and control of a minifactory. Thus, the overall behavior of
a minifactory results from the interaction between its agents,
their programs, and the environments in which they operate.
The central challenge for the minifactory simulation and pro-
gramming environment is to provide the services discussed in
Section 2.1.2, facilitating the development of well-debugged
distributed programs, while easing the difficult transition from
the simulated world of bytes and pixels to the real world of
actuators and sensors.

The distributed and cooperative nature of minifactory pro-
grams has implications about the program form: an agent pro-
gram is not simply a script but rather defines an instance of a
class that implements a number of specific methods. The pro-
gram may define a new class to be instantiated or a subclass
from a preexisting standard one, but the class must imple-
ment a standard interface. This concept is very similar to the
Java applets that are used in World Wide Web programming.
For various reasons, including ease of porting and licensing
issues, we have chosen Python (van Rossum 1998), another
object-oriented language that can be interpreted, or byte com-
piled, to program our robotic agents rather than Java.

Every robotic agent program must provide two methods:
bind and run. They encapsulate the two major conflicting
requirements of an agent program—it must specify behavior
in reference to external entities but must run in a completely
distributed fashion and cannot rely on any centralized resource
or database during execution. For example, a courier must be
able to know it will be interacting with a particular manipu-
lator, but the information on how to contact that manipulator
must reside with the courier at runtime. Similarly, a manipula-
tor may need to know it will get parts of a specific type from
a specific parts-feeding device without having to contact a
central database at runtime to get the geometric and product-
specific information it needs to perform its operations.

In the AAA environment, an agent program has two dis-
tinct phases in its life cycle. First, it is written and simu-
lated within a centralized interface and design tool. This tool
provides a factory developer with a global view of the fac-
tory system under development (Gowdy and Butler 1999).
When executing within the centralized simulation environ-
ment, the bind method simply causes the relevant items
to be looked up in the simulation database before proceed-
ing to execute the run method. The second phase occurs
when the factory developer downloads an agent program from
the simulation environment to the physical agent. At this
point, the agent program must be “bound” with all of the
global factory information the agent will require while ex-
ecuting the program. To bind a program, the interface tool
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Table 1. Measured AAA-Net Round-Trip Times (mean and standard deviation) for Varying Network

Loads
Round Trip (usec)

100 Byte Message 1000 Byte Message
Number of Standard Standard
Agents Mean Deviation Mean Deviation

2 566 804 22

4 562 816 34

6 567 826 38

executes that program’s bind method and uses the results
to construct a small database containing the information nec-
essary for the agent to locate, both geometrically and logi-
cally, all of the factory elements it will interact with. This
small database serves as a starting point for an agent’s self-
initialization and exploration of its environment. For exam-
ple, in the sample courier program (Fig. 5), the bind method
calls bindAgent (* ‘FeederManip’ '), which declares
that the agent program wants to know about the manipulator
named FeederManip and assigns the result of that binding to
a local member variable for use in its run method. As a re-
sult of the invocation, the interface tool will add the relative
position of FeederManip in the courier’s frame of reference
as well as the network address of FeederManip to the local
database, which is sent to the courier along with the program
text.

The run method contains the “script” that actually runs
during execution, implementing the discrete logic of the agent
that is responsible for initiating and coordinating the behav-
ior of this agent. For example, the run method in Fig-
ure 6 causes the agent to loop, transferring parts from a
parts feeder to couriers that request them. The run method
is written using convenience methods defined by the pro-
gram’s superclasses, which themselves cause the exchange
of messages between agents using AAA protocols and the
deployment of hybrid controllers (described in Section 3.3
below). For example, the convenience method invoked by
self .getPartFromFeeder is implemented in the par-
ent class, ManipProgram. This convenience method ex-
tracts information from the product prototype and feeder in-
stance passed into it and sets up and monitors control policies
that will robustly pick a product of that type from that feeder.

3.3. Real-Time Control

As we have already described, an agent program in AAA
has two distinct but related runtime responsibilities: (1) it
must carry out semantic negotiations with its peers to accom-
plish work on behalf of the factory, and (2) it must properly
parameterize and sequence the application of low-level con-
trol strategies to successfully manipulate the physical world.
The programming model we are using simplifies the relation-
ship between these two responsibilities and minimizes their

Downloaded from hitp:/fijr.

# Agent class definition
class Program(CourierProgram) :
# Binding method
def bind(self):

# superclass has some binding to do
CourierProgram.bind(self)

# Bind to a particular manipulator

self.source = self.bindagent
(*‘FeederManip’ ‘)

# Bind to a particular factory area

self.corridor = self.bindArea
(**Corridorar’)

# Execution method
def run(self):

# initialize the movement
self.startin(self.corridor)

# block until manipulator is ready
self.initiateRendezvous {self.source,
‘‘Feeding’ ‘)

# move into the workspace
self .moveTo(self.sourceArea)

# coordinate with manipulator to
# get product from it
self.acceptProduct ()

# The coordinated maneuver is done
self.finishRendezvous (' ‘Loading’’)

# move out of the workspace
self.moveTo(self.corridor, blocking=1)

# instantiate the applet
program = Program()

Fig. 5. A simple courier program.
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# Agent class definition
class Program(ManipProgram) :
# Binding method
def bind(self):
# bind a bulk feeder
self .feeder = self.bindDescription
(**ShaftFeeder’’)
# bind product information
self.product = self.bindPrototype
(**ShaftB’’)

# Execution method
def run{self):
while 1:
# convenience function for getting a
# product from a feeder
self.getPartFromFeeder {self.product,
self.feeder)

# Wait for a courier to rendezvous
# with the manipulator for feeding
partner = self.acceptRendezvous (' ‘Feeding’’)

# and transfer the product to the courier
self.transferGraspedProduct (partner)

# instantiate the applet
program = Program{)

Fig. 6. A simple manipulator program.

impact on one another. Specifically, to reduce the complexity
associated with writing agent programs, the low-level control
system has assumed responsibility for the details associated
with switching and sequencing the various control policies
available for execution at any one moment.

To simplify the development of agent programs, the pro-
cess of deciding exactly when and how to switch between
low-level control strategies is removed from the agent pro-
gram and isolated from the high-level semantic negotiations
that are the primary domain of the agent program. However,
it is important to note that the high-level agent program con-
tinues to maintain explicit control over the precise policies
that are available for use at any given moment. The funda-
mental model we use for the execution of control strategies
was presented in Rizzi (1998). Briefly, rather than relying
on the agent program to generate trajectories through the free
configuration space of the agent, the program decomposes the
free configuration space into overlapping regions and param-
eterizing control policies associated with each region. The
left side of Figure 7 shows a simplistic cartoon rendering of
this approach, where ®; represent the control policies that
are guaranteed to safely move any state from anywhere in the
associated shaded domain into the domain of the next control
policy. A hybrid control system is then responsible for switch-
ing or sequencing between the control policies associated with
this decomposition to achieve a desired overall goal, induc-
ing a monotonically convergent finite state automata over the
control policies, such as that depicted on the right of Figure 7.

This scheme describes the behavior of any one agent in

Fig. 7. Example decomposition of a trivial planar configu-
ration space and the associated induced graph relating the
control policies.

terms of a collection of feedback strategies based on the state
of the system as perceived by the individual agent. The result
is a hybrid online control policy (one that switches between
various continuous policies), which makes use of the collec-
tion of control policies that have been passed to it by the higher
level agent program. By leaving the selection of goals and
the associated prioritized decomposition of the state space to
the agent program, it remains possible to describe (at the pro-
gram level) arbitrarily complex behavior without constructing
code to undertake the complex real-time management of those
behaviors.

Given this model for executing physical action, it remains
the responsibility of the agent program (specifically the script
defined by its run method) to create, parameterize, and man-
age the currently active set of controllers along with the as-
sociated sets of goals and domains. Thus, the script is only
responsible-for choosing the current overall goal, along with
appropriate intermediate subgoals, and providing parameter-
izations of control strategies to accomplish those goals. The
complex and potentially error-prone problem of making real-
time changes to the underlying control system is left to the
hybrid control system.

The interface between the script and this controller man-
ager is quite straightforward. The class from which a par-
ticular agent program instance is derived provides standard
tools for creating and parameterizing controllers and their as-
sociated domains. These resulting controllers are then, at the
direction of the script, placed into an ordered list of active
controllers. Finally, the controller manager will select the ap-
propriate control policy (from this list) to execute in real time.
The details of high-bandwidth monitoring and coordination of
an agent and its peers’ state are performed by these lower lev-
els, using a dedicated local communications network (AAA-
Net) to share information between agents. This local net-
work is used to pass relevant information between agents only
about those variables that affect their execution, resulting in
efficientutilization of the available communication bandwidth
in a manner that is transparent to the agent program.
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Communication of progress and completion of tasks back
to the script are accomplished by use of either call-back func-
tions or direct polling of the actual state of the agent. In gen-
eral, the expectation is that scripts will submit a moderately
sized list of control actions along with a set of fail-safe and
fall-back strategies capable of responding to the most dire
circumstances, then sleep (wait for a call back) until either
progress has been made or a failure has been detected. When
appropriate progress has been made, the script will, while mo-
tion is still executing, append additional control actions to the
top of the active controller list indicating new goals and delete
those control actions that are no longer useful. If a failure has
been detected, the program will proceed in a similar fashion;
only the actions added to the list will most likely attempt to
recover from the problem.

By both parameterizing the specific controllers (setting the
goal, defining the domain of applicability, specifying gains,
etc.) and ordering their placement on the list of active con-
trollers, a script is able to specify complex and efficient phys-
ical motion that is fundamentally robust. This provides a rich
and expressive method for programs to specify physical mo-
tion while reducing the risks associated with writing those
programs.

In practice, the details of this interface are hidden from the
programmer by a set of standard “convenience functions.”
For example, the moveTo(...) call in Figure 5 would
actually expand to the code fragment shown in Figure 8. It
is here that a specific resource reservation protocol is imple-
mented to ensure safe operation (Rizzi, Gowdy, and Hollis
1997) and where a standard set of controllers are parameter-
ized and placed on the list of active controllers. In this partic-
ular instance, a geometric region in the factory is reserved by
the callto self . reserve, and a call-back method is regis-
tered to execute as the agent enters the destination area. The
particular call-back method used here, Unreserve(...),
frees the reservation held on the current area as soon as the
agent departs it, thus allowing its use by other agents in the
system.

3.4. Agent Interaction

Thus far, we have focused on describing how individual agents
can be programmed to accomplish specific tasks. Construc-
tion of a useful AAA system, however, requires that agents
successfully interact with one another to undertake coopera-
tive behaviors. Not surprisingly, our approach to performing
these cooperative actions uses the same protocols and pro-
gramming constructs we have been describing. The notable
difference is that the execution of the specific control strate-
gies may require sharing significant state information be-
tween the participating agents for their behavior to be tightly
coordinated.

It makes sense to think of the two such cooperating agents
as transiently forming an abstract machine consisting of their
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# submit actions to move from self.current
to area
def moveTo(area):

# get the goal at boundary of area

# and self.current in self.current

x,y = self.getBoundaryGoal (area)

# create and submit action
controller = self.goTo(x,y)

domain = self.inArea(self.current)
self.submit (controller, domain)

# reserve area, blocking if necessary
self.reserve {(area)

# get goal at boundary of area and
# self.current in area
x,y,overlap = self.getOverlapGoal (area)

# create and submit action to cross into

# the new area

self.submit (self.goTo{x,y), self.inRegion
{(overlap))

# create and submit action to drive to the

# goal in area

# note that a callback class is invoked when
# this action starts which unreserves
self.current

self.submit{self.goTo(x,y), self.inArea(area),
start=Unreserve {self.current})

# keep track of current area
self.current = area

Fig. 8. Code fragment for moveTo.

collective degrees of freedom and a single program dictat-
ing the behavior of this abstract machine—a term we will
use to describe a collection of agents that are actively co-
ordinating their continuous behavior with one another. Of
course, in actuality, each agent will be executing its own pro-
gram and associated control policies, and it is critical that
the participating agents reliably enter into, execute, and dis-
solve the coordinated behavior. Clearly for this to happen,
the agents must arrange to execute low-level control strate-
gies that are compatible—that is, when executed in parallel,
they must communicate the appropriate state information to
their peer(s) to jointly perform the desired physical operation.

As already described in Section 3.2, our programming sys-
tem includes primitive tools to perform the necessary semantic
negotiation (e.g., the various forms of rendezvous state-
ment in Figs. 5 and 6). One simple case, with extremely
asymmetric interaction, is a transient master-slave relation-
ship between two agents, with one agent abdicating con-
trol of its actuators to the other, which monitors the state
of both and passes force and torque commands to its own
actuators as well as those of the slave agent via the high-
bandwidth AAA-Net. The details of this interaction are illus-
trated in Figure 9, which shows the expansion of the accept
Product procedure from Figure 5, and Figure 10, which
shows the expansion of the transferGraspedProduct
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def acceptProduct (source):
# slave to manipulator when it is ready
controller = self.create('‘Slave’’)
controller.master = source
predicate = self.create('‘WatchPartner’’)
predicate.is_grasping = True
self.insert (ControllerAction{controller,
predicate))

# hold position after part placement and

# manipulator withdrawal

controller = self.holdPosition{()

predicate = self.create('‘WatchPartner’’)

predicate.is_grasping = False

predicate.min_height = source.offset

action = ControllerAction(controller, predicate)

action.addStartCallback(self.tag
(**PartPlaced’’))

id = self.insert (action)

# wait until part placed
self.waitFor(*‘PartPlaced’’)
# and clean up action list
self.truncate(id)

Fig. 9. Code for acceptProduct.

procedure. The acceptProduct method abdicates control
of the courier’s motions to a manipulator master until a prod-
uct has been placed on it and the manipulator has backed off by
a given offset. The transferGraspedProduct method
coordinates the motions of the manipulator and courier and
places the part it has already grasped onto the courier.

Here, the invocation of acceptRendezvous and
initiateRendezvous, by the manipulator and courier,
respectively, has indicated the willingness of these agents
to participate in the cooperative behavior, as well as having
forced them to synchronize their execution. Immediately fol-
lowing this, a set of control policies are submitted that cause
the underlying control systems to synchronize and undertake
the desired cooperative behavior. Implicitly, the submission
and execution of these control policies (Slave and coordi
natedMove) have created a high-bandwidth communica-
tions channel between the two agents. This communication
channel is used to enable the supervisory controller manager
on each agent to make transitions based on state variables con-
tained within the peer and to allow relevant state and, in this
case, command information to pass between the two control
algorithms.

Note that throughout this process, the individual controller
managers maintain authority over the specific policies that are
executed by each agent, and it is only through the submis-
sion of a compatible set of policies by both agent programs
that the desired behavior is realized. We do not foresee this
extremely asymmetric form of cooperation as the typical be-
havior of agents, but it serves to illustrate the point: typically,
the control policy will be segmented between the agents, with

def transferGraspedProduct (partner):
# from the product information and the partner
# courier attributes calculate the courier
# position and the manipulator position
# necessary to place the product on the courier
(cour_x, cour_y, manip_z, manip_th) = /
self.findPlacementTransform{partner)

# submit action to get ready to place

controller = self.coordinatedMove(cour_ x, cour_y,
manip_z-self.offset, manip_th)

self.insert (ControllerAction{controller,
self.isGrasping()))

# submit action to go down to place product when

# both courier and manipulator have arrived at

# pre-placement positions

controller = self.goto(manip_z, manip_th)

predicate = self.coordinatedAt (cour_x, cour vy,
max_z=manip_ z-self.offset, manip_th)

self.insert (ControllerAction(controller,

predicate))

# submit action to release part when force

sensed
controller = self.releasePart()
predicate = self.forceThreshold(min force = 0.5)

self.insert (ControllerAction(controller,
predicate))

# submit action to back off from courier
action = ControllerAction(
self.goto(manip_z-self.offset, manip_th),
self.isNotGrasping())
action.addStartCallback (' ‘FinishedPlacement’’)
id = self.insert (action)

# wait for placement to finish
self .waitFor (*‘FinishedPlacement’’)
# register transfer
self.registexTransferTo (partner)

# clean up action list
self.truncate (id)

Fig. 10. Code for transferGraspedProduct.

each individual computing those terms relevant to its own be-
havior. The manual specification of these interactions can be
a complex process. Fortunately, a significant percentage of
the interactions fall into stereotypic classes for which conve-
nience functions can easily be provided.

4. Experimental Demonstrations

We have performed two demonstrations of interactions be-
tween agents using this framework. The first relies on vi-
sual servoing techniques to perform a precision alignment of
parts measuring 3 mm.? The second uses a custom-built force
sensor, with a resolution of roughly 24 mN (1o), to perform
force-guided insertion tasks.
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4.1. Visually Guided Cooperation

For our initial investigation of visually guided coordination in
the minifactory environment, we have chosen to undertake a
simplified position regulation task. The courier agent carries
a subassembly of a small medical device measuring 3 mm on
aside, and the manipulator agent observes this device through
its vision system. The task is to keep the subassembly cen-
tered within the field of view of the camera while the manip-
ulator undergoes a rotation. The only information transacted
between the two agents is commands from the manipulator in-
dicating the velocity at which the courier should move, based
on the manipulator’s visual observations.

Figure 11 shows the structure of the communication chan-
nels between the two agents and their computational pro-
cesses after execution of a rende zvous by the scripts for the
two agents—in this case, the rendezvous between the two
agents has initiated communication and spawned additional
control processes to guide their interaction. In this diagram,
circles represent processes, and the two separate shaded areas
represent the courier and manipulator agents. Internal com-
munication between processes on the individual agents uses
shared-memory structures, providing fast data sharing. For
the visually guided coordination task, the manipulator uses
three processes, in addition to the AAA-Net process. The
first (Executor) executes low-level control, the second (Head)
interprets user-level commands and scripts, and the third (Vi-
sion) analyzes images from the frame grabber. The courier
has a similar structure but lacks the vision system and associ-
ated processes.

Ovethead
Manipulator
Exechutor

visual
senvo
OTNHTONET

AAA Network

JoMISN dl 109019

Courier
Head

Fig. 11. Communications within and between manipulator
and courier agents during coordination.
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4.1.1. Image Processing

To accomplish the visually guided coordination described
above, the manipulator, which manages the camera and
frame grabber, must perform all the image-processing tasks.
The camera system contained in the end effector has a
monochrome CCD camera and an adjustable two-lens op-
tic. The resuiting magnification of this system was set at
0.75 so that one pixel corresponded to approximately 10 pom
of motion. Tsai’s (1986) coplanar method was used to cali-
brate the intrinsic parameters of the camera system, as well as
the extrinsic parameters. Wilson’s implementation was used
to numerically optimize the parameter values from measure-
ments of a calibration fixture (see www.cs.cmu.edu/gw/Tsai-
method-v3.0b3.tar.Z).

Performing visual servoing requires both global and local
feature localization strategies. The global scheme finds the
top corners of the subassembly without any initial position es-
timates, while the local scheme tracks the subassembly at the
field rate given recent position estimates. The global search
begins by locating the centroid of the subassembly’s image,
providing an initial estimate for the location of the part. Per-
forming a Hough transform eliminates pixel noise and allows
the use of linear regression techniques to recover the location
of lines representing the part edges. As seen in Figure 12, the
intersection of the lines provides accurate positions of the top
two corners of the device.

Given these estimates of corner locations, local image-
processing routines can track the corners at the field rate
(60 Hz). We use the XVision package (Hager and Toyama

Fig. 12. Results of global search for the top corners of the
subassembly—the recovered center and corner locations are
marked.
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1998) to perform these tracking tasks. The flexible nature
of XVision allows programming constraints between the two
corner trackers we used. This improves robustness of the sys-
tem by allowing it to recover from transient occlusion events.
For example, if one corner tracker fails, information from the
other corner’s position can be used to reinitialize the failed
tracker. Once the occlusion passes, the failed tracker can re-
locate the appropriate corner.

4.1.2. Visually Guided Control

Visually guided control was accomplished by processing im-
age information in the manipulator agent and sending velocity
commands to the courier agent and its controller. The vision
server, as shown in Figure 11, tracks the position of the sub-
assembly at the field rate and in turn passes the image plane
position information to the visual servo controller running
as part of the executor process. The visual servo controller
computes a desired velocity for the courier to keep the sub-
assembly at the desired position in the image plane. These
commands are finally sent to the courier controller at the field
rate (60 Hz) via the AAA-Net.

A simplified model of the visual servoing control system
is shown in Figure 13. This depiction emphasizes the three
main components of the system: the visual servo controller,
the courier controller, and the courier motor. The visual servo
controller is implemented on the manipulator agent and can
be classified as an image-based visual servo controller since
control values are directly computed from image features
(Hutchinson, Hager, and Corke 1996). In the block diagram,
H encapsulates the camera and the image-processing routines
used to locate and track the subassembly within an image. The
block labeled G, represents the adjustable gains of the visual
servoing controller—for improved performance, this includes
a proportional term, as well as an integral term, which both op-
erate on the error between the desired and current image plane
position of the subassembly. The block labeled J represents
the image Jacobian and depends on the rigid transform be-
tween the camera coordinate frame and the courier coordinate
frame. Figure 14 shows our convention for frame placement
in minifactory. Note that the frames attached to the courier
and end effector depend on the agents’ current positions and
are constantly recalculated, while the remaining frames are
precisely located during the factory self-calibration process.

The remaining major components of the simplified visual
servo system model represent the courier and its controller.
The dynamics of the courier motor are approximated by a
double integrator, and the courier controller is replaced by
a simplified proportional-derivative control scheme that has
been modified to accept velocity commands from the manip-
ulator agent. The details of courier behavior are beyond the
scope of this paper and can be found in Quaid and Hollis
(1998).

Fig. 13. Simplified model of visual servoing control system.

Z
manipuiator
coordinate frame

deffect;
coordinate frame
Z| courier coordinate
frame
Z
camera
coordinate frame

courier base
coordinate frame

Fig. 14. Minifactory coordinate frames.

4.1.3. Results

The visually guided coordination experiment was composed
of four major steps: automatic calibration of the factory, pre-
sentation of a subassembly to the manipulator, initialization
of the visual servoing system, and movement of the manipu-
lator’s #-axis as a disturbance input. Calibrating the factory
provided precise coordinate transforms between various parts
of the minifactory, as shown in Figure 14.

After calibration, the courier moved to present a subassem-
bly to the manipulator. Animage was acquired and searched
to initialize a pair of corner trackers. To guarantee that the
trackers had time to settle, both agents were prevented from
moving for 1 second. Figure 15 shows that the desired and
measured positions of the subassembly, as measured by the
vision system during a typical experiment, were different at
this point in the experiment. While keeping the manipulator
fixed, the courier was allowed to move, and as can be seen,
the initial error in the position of the subassembly was quickly
accommodated.

After the vision system was initialized, the manipulator’s
#-axis was rotated clockwise at a constant rate of 0.052 rad/s.
This served as a disturbance to the visual servoing system
starting at 2 seconds. Table 2 shows mean and standard
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Table 2. Steady-State Image Plane Position Error for the Given Visual Servo Controller: Proportional

and Integral Gains
Gains G, u Error (mm) v Error (mm)
Standard Standard
Ky K; Mean Deviation Mean - Deviation
7.0 0.0 —0.286 0.012 0.007 0.013
7.0 0.005 0.000 0.013 0.001 0.014
12.0 0.0 —0.167 0.017 0.005 0.026
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Fig. 15. Visual servoing results for K, = 7.0 and K; = 0.005,
including measured image plane location of the subassembly
(u and v), commanded courier velocities (X and y), and mea-
sured angular position of the courier and manipulator.

D from htp:#ijr.

deviation of the visual error signals (both u, lateral, and v,
vertical, directions) for three different settings of the propor-
tional and integral gains. Note that with the integral term dis-
abled (K; = 0), the resulting u-axis error was much greater
than the v-axis error (note that 1 pixel corresponds to roughly
0.01 mm). The difference in error magnitude between the
axes is a direct result of the camera configuration, since 8
motion of the manipulator maps directly into a 4 motion on
the image plane. Setting K; = 0.005 significantly reduced
the error during motion, as shown in Figure 15 and Table 2,
at the cost of slightly slower transient performance.

The overall results shown in Figure 15 were encouraging.
The manipulator’s #-axis rotation caused the courier’s tan-
gential velocity to be approximately 5 mm/s, while image
plane measurements showed a standard deviation of less than
15 pm in both axes of the vision system. Howeyver, the peak-
to-peak error was approximately 0.04 mm in the u-axis and
0.05 mm in the v-axis, corresponding to image movements
of nearly 5 pixels. The courier angle plot in Figure 15 pro-
vides one possible cause for this problem. As can be seen, the
recorded peak-to-peak motion was approximately 0.002 rad,
even though the courier was commanded to hold its orienta-
tion throughout this experiment. This “wobbling” is believed
to result from miscalibration of the courier position sensor
(Butler, Rizzi, and Hollis 1998) and contributed to most of
the error.

4.2, Force-Based Interagent Coordination

To explore the applicability of force-guided coordination in
the minifactory environment, we chose to undertake a collec-
tion of insertion (“peg-in-hole”) tasks. In our sample task, the
courier robot carried a plate bearing a chamfered hole, and a
manipulator observed forces on a peg as it was inserted into
the hole. By performing a rendezvous operation, the two
agents were able to exchange state, sensor, and command in-
formation with one another and act as a single 4-DOF device
to reliably perform the insertion task.

The details of the particular force sensor carried by the
manipulator {(shown in Fig. 17) were described in DeLuca,
Rizzi, and Hollis (2000).
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@ (b)
Fig. 16. (a) +View of courier (lower agent), configured for an
insertion task, collaborating with an overhead manipulator
(upper agent). (b) Close-up view of the manipulator’s end
effector preparing to insert a peg into a hole.

(®) (b) {©

Fig. 17. Three-axis force sensor: (a) exploded assembly
drawing of the flexure and single-axis load cells, (b) photo-
graph of the flexure with clear Lexan™ vacuum chamber

and one load cell, and (c) flexure with four load cells in place.

4.2.1. Force-Guided Control

‘We have undertaken a number of experiments to evaluate the
performance of the distributed agent pair performing this task.
To accomplish this, we have deployed a control architecture
that minimizes interagent communication by making use of
algorithmically simple control schemes. Impedance control
provides one such simple class of control policies and accom-
plishes stable interaction with an environment by converting
the system to a form that naturally performs the task (Hogan
1985; Anderson and Spong 1988; Chiaverini, Siciliano, and
Villani 1999).

To deploy animpedance control scheme, we begin by spec-
ifying the desired behavior of the system. Given a desired
mass (M), stiffness (Kyz), damping (By), and force (Fy), the
desired system behavior is given by

Mag + Ka(g — qo) + Bag+

Gi Ji(F. — Fpdz = F, M

where g represents the generalized configuration of the system

and F, the applied environmental force acting on the system.
This system behaves like a mass attached to a spring and
damper about a nominal target go, with the added integral
term driving the system to the desired contact forces (Fy).

To realize the behavior defined by (1), we developed
distributed control policies for the two independent robotic
agents. The courier can be modeled as a mass with essen-
tially ideal actuators in the x and y directions. This is a di-
rect result of the simple actuator mechanism and the friction-
less nature of the air bearing that supports the courier (Quaid
and Hollis 1998; Sawyer 1973). The overhead manipulator’s
9-axis is directly driven, resulting in negligible friction and
an equally simple model. The z-axis is driven by a ball screw
so a friction term was included to offset the effects of friction
in that axis. Thus, the dynamic model of the system takes the
form

MyG + Bag + (@) =t — Fe, 2

where M, and B, are 4 x 4 diagonal matrices that describe
the overhead manipulator’s and courier’s mass and damping
parameters, f(¢) contains the friction terms, 7, represents the
applied actuator forces, and F, is the applied environmental
forces. It is this last term that will be measured by the force
sensor mounted on the manipulator’s end effector (DeLuca,
Rizzi, and Hollis 2000). Given the system model and desired
impedance, applying inverse dynamics yields a control law of
the form

ta= M.M;'[F.+Ka(go—q) — Bag+

G; fot(Fe — Fpdtl+ Bug + f(§) + Fe. 3)

This control law is implemented separately on the two
agents, with each agent responsible for its actuated degrees
of freedom. By choosing to only allow diagonal matrices
for M, K4, Bg, and G;, this control policy is completely
diagonal, which implies that the only information that must
be shared between the agents are the sensed environmental
forces.

Critical to implementing the above control law is the com-
munication infrastructure described in Section 3.1.4. Mes-
sages sent to the courier from the overhead manipulator at
real-time rates (roughly 500 Hz) contain force sensor informa-
tion, velocity commands, and controller mode. The velocity
commands and controller mode information allow the manip-
ulator agent to command a variety of different behaviors from
the courier agent.

4.2.2. Results

In the experiments described, the overhead manipulator per-
forms contact tasks with a 0.813 mm (0.032 in.) diameter
hypodermic tube attached to the force sensor (see Figs. 16b
and 17b). Mounted on the courier is a plate containing sev-
eral sets of holes 6.35 mm (0.25 in.) in depth and ranging
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(a) (b) (c)
Fig. 18. Graphic depiction of the three classes of experi-
ments performed: (a) vertical contact, (b) lateral contact, and
(c) peg-in-hole.

in diameter from 2.54 mm (0.1 in.) to 0.838 mm (0.033 in.)
(see Fig. 16). Each hole has a 45° chamfer. Three types
of tasks were performed to characterize overall system per-
formance: vertical contact, lateral contact, and peg-in-hole
insertions (see Fig. 18). In addition, repeatability and reli-
ability experiments were performed to verify overall system
performance.

Vertical contact. The vertical contact experiment involved
the courier maintaining a fixed position, while the overhead
manipulator made contact and maintained a constant force
with the plate. Specifically, the courier performed a move
(under position control) to place it under the manipulator and
hold its position. Meanwhile, the manipulator found the top
of the plate on the courier by executing a constant-velocity,
force-guarded move. With the exact position of the plate
top registered, the manipulator servoed to a z position above
the plate by a height equal to the depth of a hole. Once the
tool tip had arrived at this position, an impedance controller
was activated with the desired position located appropriately
below the surface of the plate to obtain the desired contact
force at equilibrium. For this experiment, the desired z force
was —1 N. Results from a typical experiment are shown in
Figure 19. Note the slightly underdamped response of the
z force and the steady-state value of —1 N. The observed high-
frequency noise in the force information is attributed to un-
modeled dynamics in the gripper tube. The settling time from
impact is approximately 1 second. Response rates faster than
this were difficult to achieve without higher impact forces.
Friction in z appears to be the limiting factor.

Lateral contact. The goal of the lateral contact experiment
was to position the tool tip below the plane of the top of
the plate while the courier made contact and maintained a
constant lateral force with the side of the plate. The top of
the plate was located with a constant-velocity, force-guarded
move as in the vertical contact experiment. Controllers were
then deployed to reposition the courier and bring it into lat-
eral contact with the tool tip. When contact was made, the
manipulator executed an impedance controller, which in turn
issued desired position commands to the courier controller.

835

x107°

Z Position (m)

0 1 2 3 4
Time(s)

(@)

Force(N)

0 1 2 3 4
Time(s)
(b)
Fig. 19. Position (a) and force (b) measurements during ver-
tical contact.

The desired contact force was set to —0.4N in y. Results
of a typical experiment can be found in Figure 20. Notice
that the force applied in the y direction reaches a steady-state
value of —0.4 N. A nonzero steady-state value for the x force
can be attributed to small misalignments of the gripper tube,
misalignments of the courier plate, or compliance in the ma-
nipulator’s f-axis. The observed settling time was roughly
0.3 s. It is expected that faster settling times can be achieved
for lateral contact in which the stiffness of the 6-axis of the
manipulator is increased.

Peg-in-Hole. The peg-in-hole experiment consisted of the
courier bumping into and sliding along the manipulator grip-
per to register the plate corner and thus the entire plate geom-
etry relative to the manipulator’s tool tip. The initial bump-
and-slide maneuver involved a hybrid position-force con-
trol sequence implemented through the use of the described
impedance controllers. Once lateral contact was made, the
manipulator commanded a velocity and a mode change to
the courier such that it maintained a constant force and slid
along the plate edge. When the courier lost contact with the
gripper, the courier’s position was noted immediately, and the
plate geometry was registered to determine the location of the
hole in tool tip coordinates. The plate top location was then
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Fig. 20. Position (a) and force (b) measurements during lateral
contact.

calibrated as described earlier, and the courier was positioned
so that the gripper was directly over a chamfer of a hole. The
manipulator was servoed to a position at the height of the plate
top, at which point an impedance controller was activated with
a desired position located at the center and appropriately be-
low the bottom of the hole. The desired force was —1Nin z
and ON in x and y. Figure 21 shows typical results for this
type of experiment. The insertion data presented are from an
insertion performed on a hole with an exaggerated chamfer
of diameter 6.35 mm (0.250 in.). The oversized chamfer was
used to produce data with longer chamfer contact regions to
aid in analysis. The exaggerated chamfer explains the lengthy
duration of the insertion event. During chamfer contact, one
can see that the tool tip follows the chamfer down into the
hole as the courier moves in response to the x and y forces.
The settling time for the z force is comparable to that of the
vertical contact experiment.

Repeatability. Results are presented from two repeatability
tests in which insertion tasks were initiated from uniformly
distributed random points located above the chamfer. Re-
peatability was tested on a 1.016 mm (0.04 in.) hole with an
exaggerated chamfer of diameter 6.35 mm (0.25 in.) and a

ure 22b are attributed to slight system miscalibration and our
failure to account for small rotations of the courier. Table 3
summarizes these experiments. The difference in average in-
sertion time is due to differences in the size of the chamfers, It
is important to note that although only 93% of the 0.838 mm
(0.033 in.) hole insertion attempts made it successfully into
the hole, 63 of the failed attempts are attributed to system-level
errors. Discounting system-level failures that prevented the
experiment from beginning, the overall success rate rises to
99.3% for the 0.838 mm (0.033 in.) holes. Smaller clearance
holes present a higher chance of wedging, which explains the
larger RMS error in z force for the smaller clearance hole.

5. Conclusion

This AAA project began in November 1995. Over the past
5 years, we have concentrated most of our efforts on develop-
ing the engineering technologies needed to build the prototype
minifactory and the software infrastructures required to de-
sign and program the resulting systems. This has led us well
into the tasks of developing comprehensive environments for
modeling, simulation, and programming. A prototype 3-D
interactive user interface package has been implemented that
allows the user to look at a detailed running minifactory sim-
ulation and interact with the agents. These same tools can be
synchronized with agents operating in our laboratory to serve
as a “virtual window™ on an operating factory system (Gowdy
and Butler 1999).
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Hole Clearance Average Time Attempts Success RMS z Force Error
0.2032 mm 243 s 1000 100% 0.0663 N
0.0254 mm 236s 1000 93% 0.1091N
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Fig. 22. Tool tip start (a) and finish (b) positions plotted in
configuration space for a repeatability test involving a hole
with 0.02032 mm (0.008 in.) clearance.

Looking to the future, we foresee AAA and minifactory
serving both as a research test bed and as an exemplar of one
potential path for the future of antomated assembly systems.
Whereas our focus has been on rapidly reconfigurable assem-
bly systems for precision assembly, this approach may also
have utility for agile parts fabrication, chemical synthesis,
pharmaceutical manufacturing, and other such applications.

We are encouraged by the positive response received to
date from our colleagues in both the research and the indus-
trial communities. In particular, it would seem the notions of
increasing both intelligence and autonomy through the use of
well-crafted modular building blocks to realize rapid deploy-
ment is very attractive—provided that it can be made to work
in the real world and that it can provide realizable benefits in
the marketplace.
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