Proceedings of the 1998 International
Conference on Robotics and Automation
May 1998 Leuven Belgium

Hybrid Control as a Method for
Robot Motion Programming

Alfred A. Rizzi

Microdynamic Systems Laboratory
The Robotics Institute
Carnegie Mellon University
arizziOcs.cmu.edu

Abstract

This paper presents a class of fundamental control poli-
cies suitable for use in a novel method for designing
and specifying the dynamic motion of robotic systems.
Through recourse to formal stability mechanisms a hy-
brid control strategy (one that relies on switching of
underlying continious policies) with desirable perfor-
mance characteristics is demonstrated to be both stable
and expressive for programming such motions. The
long term intent s to utilize slightly more general con-
trol methods of this form to drastically simplify the
process of integrating and programming modular au-
tomated assembly systems.

1 Introduction

It has long been a goal of the robotics and automation
community to provide tools that will simplify the de-
sign, development, and programming of intelligent sys-
tems and mechanisms. And while much progress has
been made on the development of new and more capa-
ble mechanisms, there has been only minimal progress
at providing new paradigms for programming or in-
structing these mechanisms. The ideas presented here
are complimentary to some early ideas on task level
programming of dynamic tasks [2, 1], but focus instead
on how collections of controllers can be used to sim-
plify the task of programming the behavior of a generic
mechanism.

As a component of a long term project (minifactory!
[5]) which is focused on the development of modular
robotic components and tools to support the rapid de-
ployment and programming of high-precision assem-
bly systems, the work presented here targets the most

ISee http://www.cs.cmu.edu/~msl

basic levels of a modular control and coordination ar-
chitecture which is central to the larger project. The
overall intent is to provide mechanically, computation-
ally, and algorithmically modular factory agents and a
collection of tools to support a users interaction with
the agents thus facilitating the process of designing, in-
tegrating, and programming the factory system. This
paper addresses the problem of developing flexible low
level programming models and controllers to simplify
the often tedious task of designing, programming, and
controlling trajectories for robotic factory elements.

The ideas presented here offer a novel model of
“robot programming” based on deploying a set of con-
trollers, each with an associated domain and goal, to
describe the motion of a factory agent. This is in sharp
contrast to the traditional approach of designing pa-
rameterized trajectories and relying on local control
policies to track these trajectories. While widely ac-
cepted as an effective means for programming robot
motion, this traditional approach is often difficult to
“tune” and lacks any inherit ability to gracefully re-
cover from a large classes of potential disturbances —
for example a controller that “falls behind” a time pa-
rameterized trajectory may well saturate its actuators
in an attempt to “catch up,” often resulting in sig-
nificant wear and tear or worse yet instability. Un-
der the model proposed here, which is purely feedback
based and thus not explicitly dependent on an arbi-
trary notion of time, performance comparable to tra-
jectory planning can be ensured for the nominal oper-
ating case, while also allowing for the graceful recovery
from disturbances.

Rather than generating trajectories through the free
configuration space of the robotic agent, the program-
mer will be responsible for decomposing the free config-
uration space into overlapping polygonal regions and
parameterizing controllers associated with each region.

A hybrid control system is then responsible for switch-
ing or sequencing between the control policies asso-
ciated with this decomposition to achieve the desired
overall goal. This provides a programming model that
allows low level behavior to be managed and executed
by the mechanisms while allowing high-level behavior
to be sequenced and guided by the programmer.

2 Sequencing Controllers

The central notion behind this scheme is to describe
the behavior of any one agent in terms of a collec-
tion of feedback strategies based on the state of both
the individual agent and its immediate peers. The re-
sult is a hybrid on-line control policy (one that dis-
cretely switches between various continuous policies)
which makes use of the entire collection of available
controllers to systematically make progress toward a
goal based on an agent’s estimate of both its own and
its peers’ state. To provide the desired system level
flexibility the selection of specific goals and their se-
quencing is left to the factory programmer.

More formally, given a set of controllers, U =
{®1, ..., P}, each with an associated goal, G(®;), and
domain,D(®;) — where it is presumed that under the
action of ®; any state that starts in D(®;) will be
taken to G(®;) without leaving the set D(®;). We
then say that controller ®; prepares controller ®5, de-
noted ®; = @5, if its goal lies within the domain of the
second G(®1) C D(®2) [1]. For an appropriately pa-
rameterized set of controllers, ¢, this relation induces
a generally cyclic directed graph. Assuming that the
overall goal, G, coincides with the goal of at least one
controller, G(®;) = G, then by starting with ®; and
recursively tracing the relation backwards through the
corresponding graph, one arrives at g C U — the set
of all controllers from whose domains the overall goal
might be eventually reached by switching between con-
trol policies. The domain of a properly conceived com-
posite controller, should then be (Jg¢y, P (@), and
thus we have an “automatic” method by which to guide
the system from any state in this union of domains to
the goal.

Consider, for example, the trivial planar configu-
ration space depicted in Figure 1. Here we can see
that the user has chosen to decompose the free space
into four separate regions with the overall goal located
in the upper right corner of the configuration space
(G4). Here, ®; is responsible for for taking all states
in the lower convex region to G;, and thus prepares
®,. Similarly the placement of G5 and Gs allow both
®, and @3 to prepare @, which regulates the state to

Figure 1: Example decomposition of a trivial planar
configuration space.

G4, the overall goal. It is the responsibility of the hy-
brid control system to systematically switch between
the individual ®; in order to achieve the overall task
goal. It is this discrete switching of underlying con-
tinuous control policies which makes this a “hybrid”
control strategy and is discussed in detail in [1]. While
this trivial example is illustrative it is important to
note that we have only considered the configuration of
the system here, while in general the actual domains,
D(®;), for the constituent controllers are defined over
the state space of the system — i.e. the positions and
velocities.

The remainder of this paper will focus on developing
the individual controllers, ®;, which are responsible for
efficiently taking as large a possible region of the state
space to the local goal G;.

3 Component Controllers

We will consider the second order system governed by

, (1)

with u,z € IR". This model can most easily be
thought of as a unit mass in n-dimensions to which
arbitrary acceleration can be applied, although for sim-
plicity we will use it to stand in as the dynamics for an
arbitrary mechanism under our control. Furthermore
we will subject (1) to the constraints

r=u

lull < Umax (2)
lZ]| < Vmax (3)
2ty € P V>0 (4)

Po={reR"|fi(z)>0} Vie{l...N}

B = ll-Tm — ¢4,

where

lll=1 Vie{l...N}
T, #1 Yi#je{l...N}
N>n+1

and P is presumed to be non empty. These constraints
specify, respectively, that there is a maximum acceler-
ation that can be applied to the body, a maximum ve-
locity which can not be exceeded, and finally and most
importantly that there is a convex polygonal region
from which # should not depart. This final constraint
corresponds directly to the decomposition introduced
earlier.

The problem is to design a family of controllers
which takes the largest possible set of initial states to
to an arbitrary point in the interior of P at zero ve-
locity, (z*,0). Furthermore if these controllers are to
be considered for application in any real system they
should afford a reasonable level of performance, mean-
ing that they well utilize the available velocity and
acceleration limits to accomplish this task.

3.1 The Savable Set and Stopping (®5)

The first problem is to explicitly decide what initial
conditions from TP = {(z,&)|z € P,& € R"} can
possibly be brought to the destination, (z*,0). To
begin with, recognize that any state which can be
brought to rest within P can eventually be driven to
(z*,0) by recourse to any number of conservative and
simple control strategies. Thus we reduce this prob-
lem to one of finding those initial conditions in TP
which can be brought to rest without violating the con-
straints of (2)-(4). This set of states will be referred
to as the savable set, S, and is D(Pg).

Consider a controller which acts to push z away
from the nearest (in time) boundary of P. Begin by
determining the time to tmpact with boundary com-
ponent i by

Tr—c¢

= -t o)
this is the time it will take for z to satisfy {7z —¢; = 0
and thus depart the interior of P if no input is applied.
Discarding the non-positive and infinite d;, then select-
ing the set of indices corresponding to the boundary
components with the minimum time to impact yields a
set, Z, of no more than n boundary components. The
stopping controller, ®g, is then given by u = 0if Z =
and otherwise

Zjezljle*t

U= — :
| Ejel’ljle'TH -

(6)

Intuitively this control policy uses the maximum
available acceleration to push x away from the bound-
ary component it will strike first. Presuming that z is
not aligned with the corresponding I; (i.e. traveling
straight at the boundary component) there will be a
time when two boundary components will have equally
small positive d;’s (i.e. & will be heading toward a cor-
ner), at this point 7 will contain two elements and
u will be directed to apply the maximum acceleration
away from the intersection of these two boundary com-
ponents. This process continues until z reaches zero.

Proposition 1 The controller specified by (6) brings
to rest every initial condition in TP which can be
brought to rest without violating (2)-(4).

Proof: Consider that there existed a state, (z,z),
which can not be brought to rest inside of P by
(6), but can be brought to rest by another con-
troller, C. Note that under the action of (6) any
violation of the boundaries of P must involve a
violation of the boundary component which has
the smallest time to impact for the initial state.
Further note that (6) uses all of the available ac-
celeration to maximize the rate of increase of §;
for the “nearest” boundary component(s). So C
must not have this property and thus must not in-
crease the time to impact with the initially “near-
est” boundary component more quickly than (6).
But (6) was unable to prevent the violation of that
boundary component and we conclude neither was

C.

O

3.2 Velocity Regulation (¢v)

The second problem is to design a family of controllers
capable of taking any point at rest in P to the specified
destination, again respecting the constraints, (2)-(4).
While the generation of a solution of this problem is
not fundamentally difficult, it is imperative that the
trajectories generated by these controllers be efficient
— i.e. they are near minimum time trajectories and
provide a natural parameterization for such things as
approach velocity, stiffness, and damping.

Begin by considering a measure of distance to the
target position of the form

& —)

7(2) = | (7)

o= +a

where z* is the desired rest position for the system.
This function is both positive definite about #* and

has a bounded gradient. Figure 2 graphs the value of
~ and its gradient for scalar z and a particular choice
of & and demonstrates how the parameter « is used to
smooth the transition from —1 to 1 in the vicinity of
le — a7|| = 0.

104
0.5
0.0

-0.54

gamma(x)
D
1
grad gamma(x)

o

-1.0

Figure 2: Graph of v and its gradient with a = 5.0
and z* = 0.

Intuitively it would be attractive to use the trans-
posed Jacobian (gradient) of v, D,y 7T, as a position
dependent velocity command for (1), for example in a
controller of the form

u=—(V*DyT +&) K —V*D*y 1, (8)

where 0 < V* < Vyax specifies the nominal approach
velocity, K > 0 serves as a “velocity regulation” gain,
and the Hessian of 7, D2~ | is used to effectively feed-
forward the necessary acceleration to track the de-
sired position dependent velocity profile. The stability
of this controller in the absence of any external con-
straints can be seen be considering

1
= VKA (e) + 57 (9)

as a candidate Lyapunov function for (1) under the
influence of (8), about z*. Taking the time derivative
of (9) along the trajectory of the system yields.

y =V*KDvyi+ i u. (10)

Finally substituting (8) gives
iy = V*(KDyi—iTDyTK) "
— T Ki — 2TV D%y 2. (11)

The term in parenthesis is identically zero, and the
remaining two terms are negative semidefinite in the
state (they do not include z), this follows since K was
defined to be positive, and the Hessian of % is posi-
tive definite. Thus we can immediately conclude that
lim; o £ = 0. And finally by recourse to LaSalle’s In-
variance Principle [3] that in fact lim;, o Dy = 0 and
thus v must converge to 0 while z converges to z*.

Proposition 2 Under the influence of (8) the surface
Vi={(x,2) | V*DyT +2 =0} is both attractive and
nvariant.

Proof: Consider a candidate Lyapunov of the form
1 * T AT * T .
=3 (V*DyT +a) (V*DyT+2). (12)

Again, taking the derivative along the trajectories
of (1) under the control of (8) yields

o= (V'DyT 4+ &) (V' DMya+u), (13)
Which simplifies to
io=—(VDyT +&) (V' Dy T +d) K, (14)

and allows us to conclude that & does indeed con-
verge to —Dry (z)7.

The problem remains to demonstrate that appro-
priate parameterizations of this controller, (8), can be
chosen to ensure that the constraints (2)-(4) are not
violated by this policy over a reasonable domain.

First consider (3). The conditions under which this
constraint are maintained can be examined be evalu-
ating the time derivative of %rTr when ||Z|] = Vmax.
This evaluates to

—iTe K —&D*y i — KDy &. (15)
and allows us to conservatively conclude that this con-
trol policy will not violate (3) whenever

Dy i > 0. (16)

Intuitively this implies that, with respect to this con-
straint, it is safe to utilize this controller whenever the
current velocity is roughly in the same direction (has a
positive inner product with) the “reference velocity,”
DyT.

Next consider (2). By inspecting (8) it is clear that
at very least we must ensure that V*||D%y Dy 7| <
Vmax V& € P to guarantee that (2) is not violated
while tracking the surface V. This yields an inequality
constraint on « which dictates that « be chosen large
enough to allow ample room for deceleration from V*
in the vicinity of 2*. Furthermore there is a tradeoff
between the choice of the gain K and the extent of the
domain over which (8) can be applied without violating
(2). This simply takes the form

| (V*DyT + &) K+ V*D*y il < Upax. (17)

Finally we must consider the conditions under which
(8) can be guaranteed to not violate the boundary of
the convex region defined by (4). This is the most
difficult problem in verifying the applicability of (8),
the details of which are currently under investigation.
Roughly, the intent is to make recourse to ideas de-
veloped in [4] to develop a “potential function” that
will serve as yet another Lyapunov like function for
(1) under the influence of (8). For example, consider

TS Je—) — (18)

where
B)= J] B). (19)

ie{1..N}

This potential function is uniformly unity on the
boundary of P, where at least one 3 = 0, and
has a unique minimum at the destination, z*, where
v(z) = 0. Augmenting this with a measure of kinetic
energy we have

1
ne = o(x) + 5’ 4, (20)

and taking the derivative,
Ny = Dyd Dy i+ Do DB & + 7 u. (21)
Finally substituting (8) for u results in

(Dy¢ — K) Dy i
+Dpé DB i (22)
—iTK& — T D? &

N =

Under appropriately conservative assumptions (large &
in (18), large K in (8), B(x) > €) this expression will
be negative over a suitably large domain of the state
space, but the formal demonstration of this remains to
be shown.

3.3 Joining the Savable Set to the Ve-
locity Regulator (®,)

In order to construct a single “controller” capable of
regulating the largest possible domain to z* it is neces-
sary to devise a suitable scheme to smoothly transition
from the “emergency stop” policy of (6) to the “veloc-
ity regulator” of (8), and ideally the transition policy
should make efficient us of the available force capabil-
ities. Begin by defining

(=)

le =]

(23)

e =

then consider
- { (I — ééT) ﬁUmaX if || (I— ééT) z|| >0
otherwise

(24)
which applies the maximum available force perpendic-
ular to « in order to align it with €, which is parallel to
D~ , otherwise it uses all the available force for accel-
eration. Obviously this control policy does not violate
(2), but some care is required to limit its application
so as to not violate (3) or (4). First by choosing only
to use this policy when

2]l <[P Il < Vinax (25)

we ensure that this controller will not actively violate
(3). To guard against violating (4) we begin by defin-
ing a different and slightly abstracted “time to impact”
from that used in Section 3.1. Define the time to im-
pact with obstacle i, p;, as the smallest positive root

of
1 .
0=8i(z) + 1 ép; + il/lT (1 —ee") ||;:||Uma"pl2 (26)

and define p; = oo if (26) has no positive real roots or
either (fz > 0or e < 0. If p =00 Vie {l...N}
then (24) can be guaranteed to stop from departing
from P. This new “time to impact” differs from that
of (5) in that it considers the influence of the controller
(24) on (1), rather than just the uncontrolled dynamics

of (1).

4 The Complete Controller

Section 3 proposed three controllers to be used in
concert to regulate a maximal set of initial conditions
to an arbitrary interior point of a convex region in a
free configuration space. To assembly these controllers
we need to demonstrate that they prepare one another,
and to prioritize their application. First note that (8)
has (z*,0) as a stable equilibrium, and that this point
can be placed arbitrarily in the interior of P. Thus
the controller of Section 3.2 can serve as the final or
“highest priority” controller. Thus it is valid to uti-
lize a properly parameterized version of this controller
whenever (16) and (17) are satisfied, and the intersec-
tion of these two constraints defines its domain.

The controller of Section 3.3, (24), has a domain
given by (25) and the slightly more complex conditions
associated with (26). Under it’s action 2 will tend
toward D~y and thus the state, (z,) will approach V,
at which point the state will depart from the domain
of the controller, however from Proposition 2 it is clear

=™
N

Figure 3: Diagram of the three controllers of Section
3 and their associated domains for the scalar control
problem: (a) domain of ®g; (b) domain of ®;; (c)
states outside of the savable set, §; (d) the surface V;
(€) the domain of @y .

that V lies within the domain of ®y, and thus these
controllers have a prepares relationship.

Finally the “stopping” controller of Section 3.1 is ca-
pable of bringing to rest all possible states, thus having
the goal set {(x,z) |z € P& = 0}. This set is clearly
within the domain of ®; and there is again a prepares
relationship between these two controllers.

So the final result is a hybrid control policy, which
at every instant in time chooses which constituent con-
troller to apply by sequentially testing whether the cur-
rent state is in the domain of i) the “velocity regula-
tor”, @y, i) the “joining controller”, ®;, or iii) the
“stopping controller”, ®g. If the state is outside all
three domains then it has either already violated one
of the constraints (2)-(4) or will inevitably violate (4)
independent of the control action taken.

Figure 3 offers a somewhat stylized view of the
relationships between these controllers for a sample
scalar problem (x € IR'). Here the boundaries be-
tween the domains of the various controllers is clear,
and it is relatively easy to envision how a trajectory
evolves through the state space as the controllers are
sequenced.

5 Conclusions

While the primary focus here has been on the techni-
cal issues surrounding the development of a particular
control policy capable of operating over a convex re-
gion of a systems configuration space, it is important
to not lose sight of the longer term utility of this policy.
As mentioned in Section 2 it is only when this hybrid

policy is itself used as a constituent controller for a yet
higher level controller switching policy that we begin to
realize the proposed method for motion programming.
The flexibility of this approach becomes clear when
you consider the behavior taken by such a collection
of controllers running under a switching policy such as
that in [1], where controllers which are “closer” to the
overall goal are opportunistically activated whenever
the state of the system enters their domain. Thus even
in the trivial example of Figure 1, where the “control
points”, G;, are specified in the center of the corners,
the controller will naturally “cut” the corners with-
out jeopardizing safety. This results in a much more
natural and efficient path with no programmer inter-
vention, and provides a more natural and expressive
means for specifying robot motion.

Acknowledgments

This work was supported in part by the NSF under
grant CDA-9503992. The author would like to thank
Dan Koditschek, and Howie Choset for their inspira-
tion and many helpful discussions.

References

[1] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek.
Sequential composition of dynamically dexterous
robot behaviors. submitted to the International

Journal of Robotics Reaserch, 1996.

[2] Robert R. Burridge, Alfred A. Rizzi, and Daniel E.
Koditschek. Toward a dynamical pick and place.
In TROS, pages 2:292-297, August 1995.

[3] J.P. LaSalle. “Some extensions of Liapunov’s sec-
ond method”. IRE Transactions on Circuit The-
ory, pages 520-527, December 1960.

[4] Elon Rimon and D. E. Koditschek. Exact
robot navigation using artificial potential fields.
IEEE Transactions on Robotics and Automation,

8(5):501-518, Oct 1992.

[5] A. A. Rizzi, J. Gowdy, and R. L. Hollis. Agile
assembly architecture: An agent-based approach to
modular precision assembly systems. In IEFE Int’l.
Conf. on Robotics and Automation, Albuquerque,

April 1997.

