Robotics: Science and Systems I, (RSS '06)
Philadelphia, PA, August 16-19, 2006

Integrated Planning and Control for Convex-bodied
Nonholonomic systems using Local Feedback
Control Policies

David C. Conner, Howie Choset and Alfred A. Rizzi
Carnegie Mellon University, Robotics Institute
Pittsburgh, Pennsylvania 15213

Email: {dcconner+,choset+,arizZi@ri.cmu.edu

Abstract— We present a method for defining a hybrid control
system capable of simultaneously addressing the global naviga-
tion and control problem for a convex-bodied wheeled mobile
robot navigating amongst obstacles. The method uses param-
eterized continuous local feedback control policies that ensure
safe operation over local regions of the free configuration space
each local policy is designed to respect nonholonomic constraints,
bounds on velocities (inputs), and obstacles in the environment.
The hybrid control system makes use of a collection of these -
local control policies in concert with discrete planning tools in
order to plan, and replan in the face of changing conditions,
while preserving the safety and convergence guarantees of the
underlying control policies. This work is validated in simulation
and experiment with a convex-bodied wheeled mobile robot. The [ ]
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approach is one of the first that combines formal planning with x (meters)
continuous feedback control guarantees for systems subjedd
nonholonomic constraints, input bounds, and non-trivial body a) Cell Projections b) Experimental Runs

shape.
P Fig. 1. a) Projection of three-dimensional cells in t#hg plane (work space).
|. INTRODUCTION b) Experimental results of four robot runs using the propdsgatid control
framework. By chaining the policies sequentially togetliee, system can be
The problem of simultaneously planning and controllingrought to an overall goal. The paths are induced by the bedgolicies,

the motion of a convex-bodied wheeled mobile robot in Which are switched according to the ordering determined bgaete planner.
. . . n explicit desired path is never calculated. The projecti the individual
cluttered planar environment is a challenging problem bsea ,jicy domains are shown in light gray.
of the relationships among control, nonholonomic constsai
and obstacle avoidance. The objective is to move the robot
through its environment such that it arrives at a designated
goal set without coming into contact with any obstacle, ehilvector field. Composing these relatively simple policies in
respecting the nonholonomic constraints and velocityuinp duces a piecewise continuous vector field over the union of
bounds inherent in the system. the policy domains. Apolicy is defined as a configuration
Conventional approaches to addressing this problem tygiependent vector field over a local region of the robot's free
cally decouple the navigation and control problem [1], [2)sonfiguration space, termedcall. The vector field flow over
[3]. First, a planner finds a path, and then a feedback contgsich local cell leads to the specified policy goal set within t
strategy attempts to follow that path. Non-trivial robotdgo cell. Figure 1-a shows some of the cells, which are defined in
shapes complicate the problem of finding a safe path, as theee-dimensional configuration space, projected intozthie
path must be specified in the free configuration space of tAgne. Figure 1-b shows four paths induced by invoking the
robot. This leaves the challenging problem of designing lacal policies for four different initial conditions in theobot
control law that converges to the path, while remaining sagxperiments, as will be discussed in Section V.
with respect to obstacles. A discrete transition relation represented by a graph is
We address the coupled navigation and control problem mduced by the transition between the domain of one policy to
generating a vector field along which the robot can “flowthe domain of a second policy containing the policy goal set
Unfortunately, determining a global vector field that da&s of the first. On-line planning, and re-planning under chaggi
all of these objectives for constrained systems can be quitenditions, becomes more tractable on the graph, allowing
difficult. Our approach, inspired by the idea séquential us to bring numerous discrete planning tools to bear on
composition[4], uses a collection of local feedback controthis essentially continuous problem. By sequencing thalloc
policies coupled with a switching strategy to generate thpolicies according to the ordering determined by a discrete



planner via graph search, the closed loop dynamics induceThe proposed hybrid control approach is based on the tech-
the discrete transitions desired by the discrete plan. Thiue of sequential composition [4]. This technique enatiie
overall hybrid (switched) control policy responds to syste construction of switched control policies that have gutzed
perturbations without the need for re-planning. In the fate behavior, and provable convergence properties. In itsraig
changing environmental conditions, the discrete grapbwall form, sequential composition uses positively invariargtest
for fast online re-planning(reordering), while contingino regulating feedback control policies; the policy domairis o
respect the system constraints. attraction are used to partition the state space into cells.

By coupling planning and control in this way, the hybrid The overall control policy induced by sequential compo-
control system plans in the discrete space of control mlici sition is fundamentally a hybrid control policy [12], [13].
thus, the approach represents a departure from convehtiohlae method of composition based on the relationship between
techniques. A “thin” path or trajectory is never explicitlypolicy goal sets and domains obviates the need for complex
planned; instead, the trajectory induced by the closegd-lostability analysis of the form given in [14]. The stability o
dynamics flows along the vector field defined by the actiie underlying control policies guarantees the stabilityhe
policy, which is chosen according to an ordering determinewerall policy [4]. Disturbances are robustly handled juied
by a discrete planner. A plan over the discrete graph agsociatheir magnitude and rate of occurrence is relatively small
with the collection of policies corresponds to a “thick” secompared to the convergence of the individual policies.
of configurations within the domains of the associated local Sequential composition-like techniques have been applied
policies. to mobile robots. Many examples are for systems without

This approach offers guaranteed convergence over the unigiholonomic constraints, where the policies are defined
of the local policy domains. For the method to be completeyer simple cells — polytopes and balls — in configuration
the entire free configuration space must be covered by poliggace [15], [16]. Sequential composition has also been used
domains (cells). This is a difficult problem due to the muip to control wheeled mobile robots using visual servoing [17]
constraints on the robot dynamics. Even constructing the f{18]. In these cases, the local control policies were design
configuration space in the first place is a difficult problenased on careful analysis of the system, its constraintstran
This latter difficulty is avoided by deploying policies ugin problem at hand. Other researchers have focused on autbmate
workspace measurements to guarantee that the policy dongployment of generic policies for idealized (point) fully
lies in the free configuration space. Herein, the focus is @¢tuated systems in simulation [19], [20], [21].
deploying a “rich enough” collection of policies that enesbl
the navigation problem to be addressed over the bulk of the
free configuration space. As the robot moves through its planar workspace, its con-

This paper describes the basic requirements that any lofigHration evolves on the manifol§ E£/(2); the configuration
policy must satisfy to be deployed in this framework; eacl§ locally represented ag = {z,y,0} € Q ~ SE(2). We
local policy must be provably safe with respect to obstacl@sume a kinematic model of the system, meaning the system
and guarantee convergence to a Speciﬁed po“cy g0a| sde WNﬁlOClty is direCtly controlled. The nonholonomic congtia
obeying the system constraints within its local domain. waherent in wheeled mobile robots determine a linear mappin
develop a set of generic policies that meet these requiresmerfl (¢) : U — T,Q between the control input € U C R?
and instantiate these generic policies in the robot's fredig- and the configuration velocity; that is = A (¢) u naturally

uration space. Finally, a concrete demonstration of ctiimgo respects the nonholonomic constraints. The input spaas-
a real mobile robot using a collection of local policies i§umed to be a bounded subsefivt without holes, represents

described. the control inputs available to the system.

We address the navigation and control problem for these
systems by developing a collection of feedback control-poli
cies, over local regions of configuration space that areg¢drm

Our approach maintains the coupling between plannimglls. Let®; denote thei*" policy in the collection, and let
and control, unlike conventional approaches that decoilngle =, C Q denote the policy’s associated cell. Define the cells
problem into a path planning problem and a path-followinm a local region ofIR?® that represents a local chart of the
control problem. If the path planning does not consider thmnfiguration space manifolflE(2); the cells are restricted to
nonholonomic constraints, this decoupled approach oéiedd compact, full dimensional subsets B® without holes. It is
to highly oscillatory paths that require great control &ff®é], assumed that the boundary of the c8k;, has a well defined
[6]. Motion planning approaches that do consider nonholonit normal,n (¢), that exists almost everywhere. The policy
nomic constraints typically assume a discrete set of féasilgoal set is defined within the closure of each cell. The feekiba
motions, and search for a shortest feasible path composedaitrol policy is defined by a mappind; : =Z; — U such that
arcs of feasible motions [7], [8], [9], [10]. In another deco the flow along the vector field induced byo @; : E; — 7,Q
pled example for nonholonomic systems, open-loop steerilegnds to the designated goal set.
methods address the point-to-point navigation problemrhén t This paper restricts discussion to a new class of “flow-
absence of obstacles [5], [11]. through” policies [20], where the goal set is defined on the

IIl. GENERAL FRAMEWORK
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piecewise analytic representation of the robot body boynda
and a parametric representation of the cell boundary, an
exact piecewise parametric representation of the expareled
surface can be determined directly. See [22] for details.

The second condition is a generalizationpafsitive invari-
ance termed conditional positive invariance [23]. Whereas
earlier versions of sequential composition were restlidte
convergent control policies with positive invariant donmi
b) Cell expanded to represent robot  we allow policies that cause the system ftow-through a

a) Extent of robot body in workspace body extent designated goal set and not come to rest within the goal set.
Fig. 2. The cell boundary (dark inner surface) may be expataladcount for For a_Con_d'tlona”y pO_SItIVE 'nva”am dom_al_n’ the configtion .
the non-trivial robot shape. The minimum signed distance flomprojected remains in the domain of the policy until it enters the desig-
S”houeﬁﬁ C]g"t\}/ﬁ; of t?:me?ga;?%% ;zﬂléoutggefl?ﬁgséoziﬁg‘; g('z?;tisg nated goal set. Coupled with the fact that the cell is coethin
ggﬁégéf\lotz, the ?Fl)Sen face of the goal set is not shown. The get will in free Conflgurathn _Space’ andltlonal posmvg _mvamm
be contained within the domain of another policy, so expamdiis set is guarantees the policy is safe with respect to collision.
unnecessary. To maintain conditional positive invariance, the systenstnu
be able to generate a velocity that, while satisfying theesys
constraints, keeps the system configuration within theavedl
boundary of the cell. Other types of policies can be readigway from the boundary. On the cell boundary away from the
added to the proposed framework provided they meet thgy) set, the velocities are restricted to the negativedpte
general conditions described below. defined by the outward pointing unit normal at the boundary
point; that is, there must exist@ae U such that

A. Generic Policy Requirements

In order for a local policy to be valid, it must have several n(g) - Alg)u <0, 1)

properties. First, to induce safe motion, the cell must Rghere A (¢) encodes the nonholonomic constraints. For flow-
contained in the free configuration space of the robot $grough policies, the aim is to to drive the system configanat
that collision with any obstacle is not pOSSible while thﬂqrough the goa| set; hence, some points in the goa] set must
configuration is within this cell. Second, under the inflmzncsatisfy the analogous necessary conditiofy) - A (q) u > 0.
of the policy, the induced trajectories must reach the goalThe third requirement is that a valid policy must bring any
set without departing the associated cell from any initighitial configuration within the cell to the specified goat &
configuration within the cell. Third, the system must reacfite time. In general, determining this for constrainestsyns
the designated goal set in finite time for any initial coratiti can pe difficult and must be considered for each type of policy
within the cell. Fina”y, to be praCtical, the cells must haVin Conjunction with its cell and goa| set Speciﬁca’[ion_
efficient tests for point inclusion. In summary, policies that respect the system constraints,
The first condition is that the cell must be contained in thgave simple inclusion tests, are completely contained in
free configuration spacefSg, of the convex-bodied robot; the free configuration space, are conditionally invarizmtg
that isZ; C FSg C Q. Any configuration within a valid whose vector field flow converges to a well defined goal set
cell is free of collision with an obstacle. Testing that théh finite time may be deployed in this sequential composition
cell is contained inFSo would seem to require constructingframework. Given a specific system model and inputget
FSg, and then performing tests on this complicated spaagese conditions limit the size and shape of the associatiéd ¢
This complexity can be avoided by testing the cells based gnthe free configuration space. In Section IV, we describe a

workspace measurements. Consider the composite set ¢ pofimily of policies that satisfy these requirements.
in the workspace obtained by taking the union, over the set

of cell boundary configurations, of the points occupied by tfB- Discrete Abstraction
robot body. The cell is contained in free configuration space Sequential composition defines a specific relationship be-
if no points in this composite set intersect an obstacle (seeeen the policies. Finite time convergence coupled with
Figure 2-a). conditional positive invariance induces a transition tiefa
For a given cell, this composite set can be determindetween a given policy domain (cell) and its associated goal
analytically by defining a surface that accounts for the thmet. This transition relation, coupled with having the gwlof
maximum extent of the robot body at each configuration @ne policy contained in the domain of another policy, induge
the cell boundary (Figure 2-b). This surface, which can liiscrete transition relationship between the two policigsen
thought of as an expansion of the given cell, is projectédo control policies,®; is said toprepare ®;, if the goal set
into the workspace (Figure 2-a). If no points in the surfacef ®; is contained in the domain ob; [4]. This prepares
projection intersect an obstacle, then the cell lies in tlee f relationship, denote®; > ®;, induces a graph structure by
configuration space of the system, and the system candefining adirectededge between the two nodes corresponding
collide with an obstacle while remaining in the cell. Given #o the two policies.
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collection of policies. discrete abstraction.

Fig. 3. This figure shows the relation between a set of paligad the

discrete abstraction. In this examptep, preparesb 4 and|J {® 5, D¢ ). Fig. 4. Schematic representations of the generic cell. Sontieeomportant

parameters are labeled.

Often the size of a valid cell that satisfies the policjhe other hand, for a given policy goal set, we want the policy
requirements is tied to the size of the specified goal s€@main to capture as much of the free configuration space
therefore, to enable larger cells, it is useful to considsicies as possible given the system constraints. That is, we want
where no single policy domain covers the designated goal d8€ policies to beexpressive This paper focuses on how far
Therefore, we extend the conventional definitionpoépares @& set of relatively simple parameterizations can be pushed.
given in [4] from a relation between two policies, to a redati Starting with a class of parameterized representationshfor
between a po“cy and a set of po"cies_ A selected poﬁqy, cell boundary, we Specify a vector field that satisfies thEpO|
preparesa set of policies if the goal set of the selected policyequirements. Here, the focus is on the general descripfion
% (®,), is contained in the union of the domains of the policieie generic cells; refer to [22] for details.
in the set, that isp; > {®;} if 9(®;) C_Uj 2(<I>j). A Cell Definition

Although the flow along a vector field is mathematically . ) ) )
dete_rminate, from the_ perspective of_ the disc_r_ete tramsiti 1he generic ce_lls are defln/ed/re!atlve to a local coordinate
relation, the single policy could result in a transition tyaf [r@me with coordinate axe$z’,y',6'}. We attach the local
the policies in the union. This introduces indeterminady in ffame to the goal set center such that the locaixis is an
the graph structure that can be represented asctian with outward pointing normal with respect to the policy goal set,

multiple outcomesThis relationship between prepares and tH¥d arbitrarily restrict the policy goal set to lie withirety'-¢’
discrete abstraction is shown in Figure 3. Given a colleotib Plane- The cell is positioned by specifying the goal seteent

policies, the specification of the prepares relationshigvben 99 :,{Ig_’y?’ 0y} with respect to the \{vorld frame/ Su‘.:h _that

policies induces a directed, generally cyclic, graph. th_e 0 -axis is parallel to_ the.worlcd)—ams and theac_ -axis is
The discrete graph abstracts the continuous dynamics of m@qed with the r.oli)o:]_dlrectmn OI: trav?ll 6%] This is shovxI/n .

problem into a finite set of transitions between policiesugh " Figure 4-a. With this setup, the cells have a central axis

! LT
a fundamentally continuous navigation problem is reducéjt‘i?ﬁne((jj bfy thehnegatlve_—amsl.l bound in local di
to a discrete graph search. If the current configuration iswe efine the generic cell boundary in local coordinates

contained in the domain of a policy corresponding to a noddth two smooth two-surfaces embeddedli. The intersec-

the graph, and a path through the graph to the overall géﬁ’l_” o_f the c_eII boundary with a plane orthogonal to the (_:zdntr
node exists, then the given navigation problem is solvalifle w2XiS 1S @ simple closed curve that may be parameterized by
the collection of currently deployed policies. By execgtihe the orlentqtloq around the’—aX|s.. This suggests a cylindrical
feedback control policies according to an ordering deteeahi parametenzapon for the generic cell boundary. Kebera

by a discrete planner, the trajectories induced by the localar encoding the depth of the cell along the negative
policies solve the specified navigation problem. To faatiét 2XIS: and lety be a scalar encoding the angle about the local

ordering, each edge in the graph is assigned a cost. Gi\?féFPXiS' Define a generic cell boundary poipt,in these local

policies that meet the above requirements, the proposéd te%oordmates as

nique is amenable to any number of discrete planning tools, —¢
including those that employ model checking and temporal p(¢,7) = |p(¢,7) - (cos B cosy —csinfBsiny)| , (2)
logic specifications [24]. p(C,7) - (sin B cosy + ¢ cos B sin~)

wherec is an eccentricity parameter apdspecifies a rotation
of the policy goal set about the'-axis. The functiorp (¢, )

In defining the local policies, there are several competirgpverns the radius in the local cylindrical coordinate syst
goals. First, we desire policies with simple representatio There is freedom in defining (¢,~y) provided (1) from
that are easy to parameterize. Additionally, we desirecfgdi Section IlI-A is satisfied for all points on the surface. We
that have simple tests for inclusion so that the system cehoose & function that has two continuous, piecewise-smooth
determine when a particular policy may be safely used. Gegments that correspond to the two surface patches — a

IV. LocAL PoLIcY DEFINITION
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funnel and a cap — defining the cell boundary. The segmeimisterms of new variableg;, and (;. The appropriate level
are shown in Figure 4. In the portion corresponding to tteet is determined by values fgf, and (; that satisfy
funnel, let p; (¢,y) be a monotonically increasing function

in ¢ that governs cell growth a$ increases away from the ) \/(C}w N (P

policy goal setyp = p; in this portion. The portion o (¢,~) Pr(CLs7q) = —pg=0. (9
corresponding to the cap section monotonically decreases f M
the maximal value op; to zero at the maximal extent gt
Formally, define the complete function as

For configurations within the inner family of level sef$, = 0

and ¢}, can be determined in closed-form from (5). If the

configuration is within the outer family of level sets, then

ps(6,7) 0<C<<¢ ¢}, = ¢u and we must determine the value ¢f that

P(C7) = (CL,) V(Cr—CL)?—(¢—¢r)? (L<C<Cu satisfies (5). Unfortunately,; cannot be found in closed form.
PricET ML t =M Fortunately, (5) is a monotonic function gf , which admits

The ~ term in p allows asymmetry into the cells [22]. Note,a simple numeric root finding procedure. The corresponding

py can have several internal parameters that govern the refgel set intersects the cell boundary @t as shown in

of expansion and shape of the cell. These internal paraseteigure 4-b. Given the values ¢f, and¢; which determine the

provide some freedom to shape the cell to fit its environmeorresponding level set, the level set normdl) is defined

For the cell to be valid, (1) must be satisfied over the entitg/ a closed-form analytic function.

surface, and the analogous condition must hold on the policyThe level set normal defines a constrained optimization over

goal set. For the cell boundary, = nggiig:;l, which is a the input space to determine the input value. In the simplest

piecewise smooth function. Restating requirement (1)rim$e case, let

of the local parameters and an inequality relation,

ut = argerzrjllin [n(q)-A(g)u] s.t.n(q) -A(g)u<0. (6)

arg(ilax aﬂ%gﬁm (&) - A Gm)u]| <0 (3) Given the assumption that the level sets satisfy (3), aisolut

t b tisfied. In oth ds. in th ¢ tri1$ guaranteed to exist.
must be satistied. In other words, in the worst case, eUsing u* as the control input drives the system from the

sy;t(ta_m mqtsr: be abI? :O ?he nerahe ba ve(ljocnytthat tI'S 'nvﬁéﬂter level sets to the inner level sets, and then contifyous
pointing with respect to the cell boundary to satisfy n to the goal. Forcing both the inner and outer level sets to

c_onditional posi.tive. in\{ariange requirement. Althoughnno satisfy (3) at every point in the cell simplifies the proof of
Ik;n(:]ar, tg’?ffunﬁtlon 1S pleceW|sfe srgc])coth an(;i g%n?ra”%'*ll‘/?lﬁnite time convergence. By virtue of (3), a solution to (6) is

ehaved” for the ma_lpplng (a) fouind Tor most robot mMogels; guaranteed to exist and will bring the system configuration
therefore, it is feasible to verify that (3) is satisfied tiffe to a “more inward” level set; thus, the system moves a finite

dugng the pollllcyhdeployment phashe. K if th f distance closer to the goal. Although a formal analytic proo
iven a cell, the system must check if the current con 9% lacking, experience shows that if the outermost level set

ratllon,q., |str|ln5|de||:[ht=,| celll. Lelz.‘{%l’.%ipq} bg' thf C]f)ordmafl?hcorresponding to the cell boundary satisfies (3), all ioteri
values in the cell's local cylindrical coordinate frame.€Th, o sets will also satisfy (3).

corresponding pointg, = {Cq,7, v}, on the cell boundary Given the inputu*, the reference vector field over the cell

is given by is simply A (¢) w*. In reality, onlyu* is important; the vector
VIF+E = (& —1)cos (27,) field is induced by the flow of the system given the control
Py = p (Cq>Vq) 7 . (4 inputs, and is never explicitly calculated.

If p, < p» and0 < ¢, < Car, the configuration is in the cell. C. Policy Deployment
i _ To deploy a policy in this sequential composition frame-
B. Vector Field Definition work, we must specify the parameters that govern the logatio
We use a family of level sets based on the parameterizatisize, and shape of the cell. Given a specification of these pa-
of the cell boundary to define the control vector field that Bowrameters, the requirements from Section IlI-A must be \aatifi
to the policy goal set. First consider the casg = 0 and Future work will develop automated deployment methods; we
(r = 0, where the cell boundary corresponds to the poliayurrently use a trial-and-error process to specify pararset
goal set. Increasing,;, while fixing (z = 0, generates a We begin deploying a policy by specifying that the policy
family of level sets that grow out from the goal; these argoal set is completely contained within the domain of other
termed thenner level sets, as shown in Figure 4-b. By fixingpolicies; this allows the prepares graph to be defined later.
(um at its maximum value and increasiqg, the outer family  First, we specifyg, to lie within the target policy cell (set of
of level sets grows; these are also shown in Figure 4-b.  cells); this can be verified using (4) above. We initialize th
For a configuration within the cell, the corresponding levglolicy goal set by specifying the functign(0, ) and elliptical
set — either inner or outer — that passes through that coafigyparameterss andc from (2). We test that the policy goal set
tion must be determined. These level sets are governed by timeindary does not intersect the boundary of a target cathun
cap (second) portion gf (,~). First, rewrite this cap portion of target cells) by testing the minimum distance between a



point on the policy goal set boundary and the corresponding
point of the boundary of the target policies. We iterativel
adjust the parameters, including the policy goal set cepter
as needed until the policy goal set is fully contained in t
target cell(s). During this iterative process, we also that
the policy goal set is valid with respect to the mappitigq)

and chosen input set. 5

Given a valid policy goal set, we grow the cell by specifyingfig. 5. Laboratory robot. 1—3 21
the parameters ¢f (¢, ) that determine the rate of cell expan-__ 05 g . b
sion and cell shape, including, and¢,,. During this process, § 2 ' o
we must confirm that the cell remains in the free configuratic ~ © :) 3 - g
space and that (3) is satisfied. Given these conditions, > 05 gy 1 2
requirements that we can reach the goal in finite tme and he %5, o o5 y (meters)
a test for cell inclusion are automatically satisfied givae t X (meters) = {meters)

methods for defining the cell and vector field. To test thai{3)

satisfied, we use numerical optimization to find the maximufrig- 6. Bounding ellipse. Fig. 7. A three-dimensional view of some of
value of (3) over thg(, v} parameter space. Given a violation the policies in the current deployment.

of (3), we iteratively adjust the parameters as needed torens

the requirements are met. V. CURRENTRESULTS
To verify that a policy is safe with respect to obstacles, . . . .
we use the expanded cell described in Section IlI-A. In theseThe techniques described in Sections il and IV were

. . . o validated on our laboratory robot. This standard difféegnt
experiments, we graphically verify that the projection bét drive robot, shown in Figure 5, has a convex, roughly eltipiti
expanded cell is free of intersection. We sample {ljev} ' ' :

parameter space with a fine resolution mesh, and calculate ody shape. To simplify implementation of the expanded cell

. . .the robot body and wheels were tightly approximated by an
corresponding points on the expanded cell surface. We giroje . X ) .
. ; analytic ellipse centered in the body coordinate framewWsho
the resulting expanded cell surface mesh into the workspace_. . . .
. . . in Figure 6). The car-like kinematic model has the form

and visually check for obstacle intersection, as shown in

Figure 2-b. This step can be automated by determining the cosf 0
mesh edges that contribute to the silhouette curve based on A(g) = [sinf 0
a simple facet normal test, and projecting those edges to the 0 1

Workspace. The_distances to close§t obstacles can be testgd inputs are forward velocity (m/s) and turning rate (ra-
against the maximum error determined by the chosen meghns/s). Although the robot is capable of zero-radius gum
resolution. The parameters governing cell size and shape fife steering rate was limited to model a traditional bounded
adjusted, and both the collision and (3) tests are repeated.steering car. This limits the rate of expansion of the ceiisell
Once all the policies are deployed, the final step is to specif, (3); for a zero-radius turn the cell shape would only be
the prepares graph; this step is completely automated. TRgited by the obstacles.
automated graph builder checks the prepares relationship f \we allow multiple input setsl4;, to account for changing
each policy against all other policies in the deploymerafta  congitions. The system changes direction by switching be-
we test for policy goal set inclusion against other cells&iss ween “Forward” and “Reverse” input sets; each having an
of cells. For the policies presented here, the preparesa@st ‘Aggressive” and “Cautious” set of values. The numerical
be done by verifying that all points on the 1D policy goal sgfajyes are based on the velocity limits of the motors, and
boundary are contained in the domains of neighboring cellg:ajed back for cautious modes and the reverse input sets. Fo
For policies that have a prepares relationship, we assign @mputational convenience, this paper is restricted tweon
edge cost heuristically based on the path length between Bifiygonalz;; this restriction is not fundamental. Each cell is

goal center and the target cells associated goal centeraanglajuated with respect to a specific choicelof
factor for the policies relative complexity.

For the policies deployed in these experiments, this mandl Implementation

deployment process generally takes between two and 3Q@For these experiments, we define a set of polygonal ob-
minutes to fully deploy each policy. The deployment timstacles in al0m x 10m world, with several corridors and
depends mainly on the tightness of the corridors and shaspnepenings as shown in Figure 8. A total of 271 policies
of the turns being navigated. The final graph generationistepvere deployed using the techniques described in Section IV;
fully automated; it took several hours to run for the depleyin of these, 15 separate policies prepared 31 different unions
used in this paper. Once this step is complete, the depldymeh policy domains according to the extended definition of
is ready to use with the robot. The up-front cost of genegatiprepares. A small number of cells are shown in Figure 7.

the deployment is mitigated by the ability to reuse the pedic ~ Given the collection of deployed policies and the assodiate
by planning multiple scenarios on the discrete graph. graph, the node associated with the policy centered in the



lower corridor shown in Figure 8 is specified as the overall
goal of these experiments. An ordering of the policy graph
is generated using a Mini-max version of D* Lite [25] as
the discrete planner. Initially, the planner generatescéal
ordering of the deployment graph based on the edge costs
determined during graph generation. If a valid path throtingh
ordered graph from a given policy node to the designated goal
node does not exist, then the node (and corresponding policy .
is flagged as invalid. As the planner executes, the effects of ’  (meters)

invalid nodes propagate through the graph; as a result,la pat

to the goal from a given node is guaranteed to exist if the nold§- 8- Path #5 requires the robot to back out of the corridod then
remains valid. D* Lite provides an efficient way to replan iffutomatically switch to forward motion.

the case where a policy status is changed to invalid after t~~,
initial planning stage; for example if a passage way is four

to be blocked as the robot approaches.

During execution, the hybrid policy tests the current e:
timate of configuration to see which policy should be ex¢: ,
cuted. Given a configuration estimate, the search begins E
testing successors designated by the discrete plannehdor
previously executed policy; if the current configuration i
included in one of these domains, the associated policy -
activated. If a designated successor containing the durr_  (meters)
configuration is not found, and the previously executedgyoli a) Path #6 b) Path #7
is still valid, the previous policy continues to executeilunt_ , ,

. . Fig. 9. Paths #6 and #7 show the execution of a K-turn to allowiono
the next update cycle. If the previously executed policy Bound a sharp corner; the paths diverge in response to tiigiesathat are
no longer active, whether due to a system perturbation or feslidated during run #7.
planning in response to an environmental change, the durren
implementation searches the graph according to the oglerin
defined by the discrete planner. emphasize, the paths shown are from an actual robot run, and

The policy switching is completely automatic once the iniare the result of policy ordering that is based on assigngd ed
tial start command is given. The system stops when it reactegsts in the discrete graph; an explicit desired path is meve
the policy designated as the goal or, if the configuratiorois ncalculated. The paths are labeled (#1 - 4) clockwise from the
contained within a valid policy domain. If a valid policy islower left.
found, the control is calculated as described in SectioBIV- The path labeled #5, shown in Figure 8, begins near the
On our robot, the forward velocity and turning rate caloedat same position as path #1 (shown in Figure 1-b); however,
by the control policy is converted to wheel speeds used by tiiee orientation is approximately 180 degrees differentitfes
low-level PID motor control loop. deployment also includes policies with the reverse inptit se
the robot backs up and then moves forward to the goal. This
automatic policy switching requires no operator interigmnt

Seven representative tests on the robot are presented a totPaths #6 and #7, shown in Figure 9, have two features that
of 19 tests were conducted. The actual data was logged eveeynonstrate the flexibility of the approach. First, like hpat
0.1 seconds during the robot experiment, and is plotted wi#s, they demonstrate automatic forward/reverse switching
the obstacles shown in the figures. On the plots, the robatthis case, the deployment does not include policies that
symbols are shown every five seconds of travel time. Althougine expressive enough to turn the lower right corner in one
the policies were initially validated in simulation, thesudts continuous motion. The robot initiates a K-turn, again viita
presented here are for actual robot runs. policy switching automatically dictated by the policy orithg.

For this round of experiments, the robot lacked an externaihile this points to the need for future research in designing
localization system, therefore the configuration estimae more expressive policies, it also validates the basic ambro
based on pure dead-reckoning. As a result of dead-reckonasythe combination of simple policies with discrete plagnin
error, inherent in all wheeled-mobile robots, the robot ldouis still capable of generating expressive motions.
have crashed into some obstacles had they been physicallfhe second feature demonstrated by paths #6 and #7 is that
present. Therefore, we ran the robot in an open space usaige-planning in the discrete space of available policise
the deployment of policies that considered obstacles asrshaobot starts from slightly different initial conditionsyubbegins
in the figures. to converge to the same vector field flow near the K-turn. Just

Figure 1-b shows the results of four of the robot runs fromafter the K-turn during run #7, the two policies crossing the
four different initial conditions and the same goal node. Tarcular obstacle shown in Figure 9-b are flagged as invalid.

v (meters)
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B. Experimental Results
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