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Abstract— We present a method for defining a hybrid control
system capable of simultaneously addressing the global naviga-
tion and control problem for a convex-bodied wheeled mobile
robot navigating amongst obstacles. The method uses param-
eterized continuous local feedback control policies that ensure
safe operation over local regions of the free configuration space;
each local policy is designed to respect nonholonomic constraints,
bounds on velocities (inputs), and obstacles in the environment.
The hybrid control system makes use of a collection of these
local control policies in concert with discrete planning tools in
order to plan, and replan in the face of changing conditions,
while preserving the safety and convergence guarantees of the
underlying control policies. This work is validated in simulation
and experiment with a convex-bodied wheeled mobile robot. The
approach is one of the first that combines formal planning with
continuous feedback control guarantees for systems subjectto
nonholonomic constraints, input bounds, and non-trivial body
shape.

I. I NTRODUCTION

The problem of simultaneously planning and controlling
the motion of a convex-bodied wheeled mobile robot in a
cluttered planar environment is a challenging problem because
of the relationships among control, nonholonomic constraints,
and obstacle avoidance. The objective is to move the robot
through its environment such that it arrives at a designated
goal set without coming into contact with any obstacle, while
respecting the nonholonomic constraints and velocity (input)
bounds inherent in the system.

Conventional approaches to addressing this problem typi-
cally decouple the navigation and control problem [1], [2],
[3]. First, a planner finds a path, and then a feedback control
strategy attempts to follow that path. Non-trivial robot body
shapes complicate the problem of finding a safe path, as the
path must be specified in the free configuration space of the
robot. This leaves the challenging problem of designing a
control law that converges to the path, while remaining safe
with respect to obstacles.

We address the coupled navigation and control problem by
generating a vector field along which the robot can “flow.”
Unfortunately, determining a global vector field that satisfies
all of these objectives for constrained systems can be quite
difficult. Our approach, inspired by the idea ofsequential
composition[4], uses a collection of local feedback control
policies coupled with a switching strategy to generate the

a) Cell Projections b) Experimental Runs

Fig. 1. a) Projection of three-dimensional cells in thex-y plane (work space).
b) Experimental results of four robot runs using the proposedhybrid control
framework. By chaining the policies sequentially together,the system can be
brought to an overall goal. The paths are induced by the switched policies,
which are switched according to the ordering determined by a discrete planner.
An explicit desired path is never calculated. The projection of the individual
policy domains are shown in light gray.

vector field. Composing these relatively simple policies in-
duces a piecewise continuous vector field over the union of
the policy domains. Apolicy is defined as a configuration
dependent vector field over a local region of the robot’s free
configuration space, termed acell. The vector field flow over
each local cell leads to the specified policy goal set within the
cell. Figure 1-a shows some of the cells, which are defined in
three-dimensional configuration space, projected into thex-y
plane. Figure 1-b shows four paths induced by invoking the
local policies for four different initial conditions in therobot
experiments, as will be discussed in Section V.

A discrete transition relation represented by a graph is
induced by the transition between the domain of one policy to
the domain of a second policy containing the policy goal set
of the first. On-line planning, and re-planning under changing
conditions, becomes more tractable on the graph, allowing
us to bring numerous discrete planning tools to bear on
this essentially continuous problem. By sequencing the local
policies according to the ordering determined by a discrete



planner via graph search, the closed loop dynamics induce
the discrete transitions desired by the discrete plan. The
overall hybrid (switched) control policy responds to system
perturbations without the need for re-planning. In the faceof
changing environmental conditions, the discrete graph allows
for fast online re-planning(reordering), while continuing to
respect the system constraints.

By coupling planning and control in this way, the hybrid
control system plans in the discrete space of control policies;
thus, the approach represents a departure from conventional
techniques. A “thin” path or trajectory is never explicitly
planned; instead, the trajectory induced by the closed-loop
dynamics flows along the vector field defined by the active
policy, which is chosen according to an ordering determined
by a discrete planner. A plan over the discrete graph associated
with the collection of policies corresponds to a “thick” set
of configurations within the domains of the associated local
policies.

This approach offers guaranteed convergence over the union
of the local policy domains. For the method to be complete,
the entire free configuration space must be covered by policy
domains (cells). This is a difficult problem due to the multiple
constraints on the robot dynamics. Even constructing the free
configuration space in the first place is a difficult problem.
This latter difficulty is avoided by deploying policies using
workspace measurements to guarantee that the policy domain
lies in the free configuration space. Herein, the focus is on
deploying a “rich enough” collection of policies that enables
the navigation problem to be addressed over the bulk of the
free configuration space.

This paper describes the basic requirements that any local
policy must satisfy to be deployed in this framework; each
local policy must be provably safe with respect to obstacles
and guarantee convergence to a specified policy goal set, while
obeying the system constraints within its local domain. We
develop a set of generic policies that meet these requirements,
and instantiate these generic policies in the robot’s free config-
uration space. Finally, a concrete demonstration of controlling
a real mobile robot using a collection of local policies is
described.

II. RELATED WORK

Our approach maintains the coupling between planning
and control, unlike conventional approaches that decouplethe
problem into a path planning problem and a path-following
control problem. If the path planning does not consider the
nonholonomic constraints, this decoupled approach often leads
to highly oscillatory paths that require great control effort [5],
[6]. Motion planning approaches that do consider nonholo-
nomic constraints typically assume a discrete set of feasible
motions, and search for a shortest feasible path composed of
arcs of feasible motions [7], [8], [9], [10]. In another decou-
pled example for nonholonomic systems, open-loop steering
methods address the point-to-point navigation problem in the
absence of obstacles [5], [11].

The proposed hybrid control approach is based on the tech-
nique of sequential composition [4]. This technique enables the
construction of switched control policies that have guaranteed
behavior, and provable convergence properties. In its original
form, sequential composition uses positively invariant state
regulating feedback control policies; the policy domains of
attraction are used to partition the state space into cells.

The overall control policy induced by sequential compo-
sition is fundamentally a hybrid control policy [12], [13].
The method of composition based on the relationship between
policy goal sets and domains obviates the need for complex
stability analysis of the form given in [14]. The stability of
the underlying control policies guarantees the stability of the
overall policy [4]. Disturbances are robustly handled provided
their magnitude and rate of occurrence is relatively small
compared to the convergence of the individual policies.

Sequential composition-like techniques have been applied
to mobile robots. Many examples are for systems without
nonholonomic constraints, where the policies are defined
over simple cells – polytopes and balls – in configuration
space [15], [16]. Sequential composition has also been used
to control wheeled mobile robots using visual servoing [17],
[18]. In these cases, the local control policies were designed
based on careful analysis of the system, its constraints, and the
problem at hand. Other researchers have focused on automated
deployment of generic policies for idealized (point) fully-
actuated systems in simulation [19], [20], [21].

III. G ENERAL FRAMEWORK

As the robot moves through its planar workspace, its con-
figuration evolves on the manifoldSE(2); the configuration
is locally represented asq = {x, y, θ} ∈ Q ≈ SE(2). We
assume a kinematic model of the system, meaning the system
velocity is directly controlled. The nonholonomic constraints
inherent in wheeled mobile robots determine a linear mapping
A (q) : U → TqQ between the control inputu ∈ U ⊂ IR2

and the configuration velocity; that iṡq = A (q) u naturally
respects the nonholonomic constraints. The input spaceU , as-
sumed to be a bounded subset ofIR2 without holes, represents
the control inputs available to the system.

We address the navigation and control problem for these
systems by developing a collection of feedback control poli-
cies, over local regions of configuration space that are termed
cells. Let Φi denote theith policy in the collection, and let
Ξi ⊂ Q denote the policy’s associated cell. Define the cells
in a local region ofIR3 that represents a local chart of the
configuration space manifoldSE(2); the cells are restricted to
compact, full dimensional subsets ofIR3 without holes. It is
assumed that the boundary of the cell,∂Ξi, has a well defined
unit normal,n (q), that exists almost everywhere. The policy
goal set is defined within the closure of each cell. The feedback
control policy is defined by a mappingΦi : Ξi → U such that
the flow along the vector field induced byA ◦Φi : Ξi → TqQ
leads to the designated goal set.

This paper restricts discussion to a new class of “flow-
through” policies [20], where the goal set is defined on the
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a) Extent of robot body in workspace

b) Cell expanded to represent robot

body extent

Fig. 2. The cell boundary (dark inner surface) may be expandedto account for
the non-trivial robot shape. The minimum signed distance fromthe projected
silhouette curve of the expanded cell to the closest obstacle is the closest
approach of the system to an obstacle under the control of theassociated
policy. Note, the open face of the goal set is not shown. The goal set will
be contained within the domain of another policy, so expanding this set is
unnecessary.

boundary of the cell. Other types of policies can be readily
added to the proposed framework provided they meet the
general conditions described below.

A. Generic Policy Requirements

In order for a local policy to be valid, it must have several
properties. First, to induce safe motion, the cell must be
contained in the free configuration space of the robot so
that collision with any obstacle is not possible while the
configuration is within this cell. Second, under the influence
of the policy, the induced trajectories must reach the goal
set without departing the associated cell from any initial
configuration within the cell. Third, the system must reach
the designated goal set in finite time for any initial condition
within the cell. Finally, to be practical, the cells must have
efficient tests for point inclusion.

The first condition is that the cell must be contained in the
free configuration space,FSQ, of the convex-bodied robot;
that is Ξi ⊂ FSQ ⊂ Q. Any configuration within a valid
cell is free of collision with an obstacle. Testing that the
cell is contained inFSQ would seem to require constructing
FSQ, and then performing tests on this complicated space.
This complexity can be avoided by testing the cells based on
workspace measurements. Consider the composite set of points
in the workspace obtained by taking the union, over the set
of cell boundary configurations, of the points occupied by the
robot body. The cell is contained in free configuration space
if no points in this composite set intersect an obstacle (see
Figure 2-a).

For a given cell, this composite set can be determined
analytically by defining a surface that accounts for the the
maximum extent of the robot body at each configuration on
the cell boundary (Figure 2-b). This surface, which can be
thought of as an expansion of the given cell, is projected
into the workspace (Figure 2-a). If no points in the surface
projection intersect an obstacle, then the cell lies in the free
configuration space of the system, and the system cannot
collide with an obstacle while remaining in the cell. Given a

piecewise analytic representation of the robot body boundary
and a parametric representation of the cell boundary, an
exact piecewise parametric representation of the expandedcell
surface can be determined directly. See [22] for details.

The second condition is a generalization ofpositive invari-
ance, termed conditional positive invariance [23]. Whereas
earlier versions of sequential composition were restricted to
convergent control policies with positive invariant domains,
we allow policies that cause the system toflow-through a
designated goal set and not come to rest within the goal set.
For a conditionally positive invariant domain, the configuration
remains in the domain of the policy until it enters the desig-
nated goal set. Coupled with the fact that the cell is contained
in free configuration space, conditional positive invariance
guarantees the policy is safe with respect to collision.

To maintain conditional positive invariance, the system must
be able to generate a velocity that, while satisfying the system
constraints, keeps the system configuration within the celland
away from the boundary. On the cell boundary away from the
goal set, the velocities are restricted to the negative half-space
defined by the outward pointing unit normal at the boundary
point; that is, there must exist au ∈ U such that

n (q) · A (q)u < 0 , (1)

whereA (q) encodes the nonholonomic constraints. For flow-
through policies, the aim is to to drive the system configuration
through the goal set; hence, some points in the goal set must
satisfy the analogous necessary conditionn (q) · A (q) u > 0.

The third requirement is that a valid policy must bring any
initial configuration within the cell to the specified goal set in
finite time. In general, determining this for constrained systems
can be difficult and must be considered for each type of policy
in conjunction with its cell and goal set specification.

In summary, policies that respect the system constraints,
have simple inclusion tests, are completely contained in
the free configuration space, are conditionally invariant,and
whose vector field flow converges to a well defined goal set
in finite time may be deployed in this sequential composition
framework. Given a specific system model and input setU ,
these conditions limit the size and shape of the associated cell
in the free configuration space. In Section IV, we describe a
family of policies that satisfy these requirements.

B. Discrete Abstraction

Sequential composition defines a specific relationship be-
tween the policies. Finite time convergence coupled with
conditional positive invariance induces a transition relation
between a given policy domain (cell) and its associated goal
set. This transition relation, coupled with having the goalset of
one policy contained in the domain of another policy, induces a
discrete transition relationship between the two policies. Given
two control policies,Φj is said toprepareΦi, if the goal set
of Φj is contained in the domain ofΦi [4]. This prepares
relationship, denotedΦj � Φi, induces a graph structure by
defining adirectededge between the two nodes corresponding
to the two policies.
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b) Graph representation of the induced
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Fig. 3. This figure shows the relation between a set of policies and the
discrete abstraction. In this example,ΦD preparesΦA and

S

{ΦB , ΦC}.

Often the size of a valid cell that satisfies the policy
requirements is tied to the size of the specified goal set;
therefore, to enable larger cells, it is useful to consider policies
where no single policy domain covers the designated goal set.
Therefore, we extend the conventional definition ofprepares
given in [4] from a relation between two policies, to a relation
between a policy and a set of policies. A selected policy,Φi,
preparesa set of policies if the goal set of the selected policy,
G (Φi), is contained in the union of the domains of the policies
in the set, that isΦi � {Φj} if G (Φi) ⊂

⋃

j D(Φj).
Although the flow along a vector field is mathematically

determinate, from the perspective of the discrete transition
relation, the single policy could result in a transition to any of
the policies in the union. This introduces indeterminacy into
the graph structure that can be represented as anaction with
multiple outcomes. This relationship between prepares and the
discrete abstraction is shown in Figure 3. Given a collection of
policies, the specification of the prepares relationship between
policies induces a directed, generally cyclic, graph.

The discrete graph abstracts the continuous dynamics of the
problem into a finite set of transitions between policies. Thus,
a fundamentally continuous navigation problem is reduced
to a discrete graph search. If the current configuration is
contained in the domain of a policy corresponding to a node
the graph, and a path through the graph to the overall goal
node exists, then the given navigation problem is solvable with
the collection of currently deployed policies. By executing the
feedback control policies according to an ordering determined
by a discrete planner, the trajectories induced by the local
policies solve the specified navigation problem. To facilitate
ordering, each edge in the graph is assigned a cost. Given
policies that meet the above requirements, the proposed tech-
nique is amenable to any number of discrete planning tools,
including those that employ model checking and temporal
logic specifications [24].

IV. L OCAL POLICY DEFINITION

In defining the local policies, there are several competing
goals. First, we desire policies with simple representations
that are easy to parameterize. Additionally, we desire policies
that have simple tests for inclusion so that the system can
determine when a particular policy may be safely used. On

x′θ′

ζL
ζM

ρ (ζ, γ)

qg

a) Cell Definition

q b

q q L′

Inner
Outer

b) Level Set Definition

Fig. 4. Schematic representations of the generic cell. Some ofthe important
parameters are labeled.

the other hand, for a given policy goal set, we want the policy
domain to capture as much of the free configuration space
as possible given the system constraints. That is, we want
the policies to beexpressive. This paper focuses on how far
a set of relatively simple parameterizations can be pushed.
Starting with a class of parameterized representations forthe
cell boundary, we specify a vector field that satisfies the policy
requirements. Here, the focus is on the general descriptionof
the generic cells; refer to [22] for details.

A. Cell Definition

The generic cells are defined relative to a local coordinate
frame with coordinate axes{x′, y′, θ′}. We attach the local
frame to the goal set center such that the localx′-axis is an
outward pointing normal with respect to the policy goal set,
and arbitrarily restrict the policy goal set to lie within the y′-θ′

plane. The cell is positioned by specifying the goal set center
qg = {xg, yg, θg} with respect to the world frame such that
the θ′-axis is parallel to the worldθ-axis and thex′-axis is
aligned with the robot direction of travel atqg. This is shown
in Figure 4-a. With this setup, the cells have a central axis
defined by the negativex′-axis.

We define the generic cell boundary in local coordinates
with two smooth two-surfaces embedded inIR3. The intersec-
tion of the cell boundary with a plane orthogonal to the central
axis is a simple closed curve that may be parameterized by
the orientation around thex′-axis. This suggests a cylindrical
parameterization for the generic cell boundary. Letζ be a
scalar encoding the depth of the cell along the negativex′-
axis, and letγ be a scalar encoding the angle about the local
x′-axis. Define a generic cell boundary point,p, in these local
coordinates as

p (ζ, γ) =





−ζ

ρ(ζ, γ) · (cos β cos γ − c sin β sin γ)
ρ(ζ, γ) · (sin β cos γ + c cos β sin γ)



 , (2)

wherec is an eccentricity parameter andβ specifies a rotation
of the policy goal set about thex′-axis. The functionρ (ζ, γ)
governs the radius in the local cylindrical coordinate system.

There is freedom in definingρ (ζ, γ) provided (1) from
Section III-A is satisfied for all points on the surface. We
choose aρ function that has two continuous, piecewise-smooth
segments that correspond to the two surface patches – a
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funnel and a cap – defining the cell boundary. The segments
are shown in Figure 4. In the portion corresponding to the
funnel, let ρf (ζ, γ) be a monotonically increasing function
in ζ that governs cell growth asζ increases away from the
policy goal set;ρ = ρf in this portion. The portion ofρ (ζ, γ)
corresponding to the cap section monotonically decreases from
the maximal value ofρf to zero at the maximal extent ofζ.
Formally, define the complete function as

ρ (ζ, γ) =

{

ρf (ζ, γ) 0 < ζ ≤ ζL

ρf (ζL, γ)

√
(ζM−ζL)2−(ζ−ζL)2

ζM−ζL
ζL < ζ ≤ ζM

.

The γ term in ρ allows asymmetry into the cells [22]. Note,
ρf can have several internal parameters that govern the rate
of expansion and shape of the cell. These internal parameters
provide some freedom to shape the cell to fit its environment.

For the cell to be valid, (1) must be satisfied over the entire
surface, and the analogous condition must hold on the policy
goal set. For the cell boundary,n =

Dζp×Dγp

‖Dζp×Dγp‖ , which is a
piecewise smooth function. Restating requirement (1) in terms
of the local parameters and an inequality relation,

arg max
ζ,γ

[

arg min
u∈U

[n(ζ, γ) · A (p (ζ, γ))u]

]

< 0 (3)

must be satisfied. In other words, in the worst case, the
system must be able to generate a velocity that is inward
pointing with respect to the cell boundary to satisfy the
conditional positive invariance requirement. Although non-
linear, the function is piecewise smooth and generally “well-
behaved” for the mappingA (q) found for most robot models;
therefore, it is feasible to verify that (3) is satisfied off-line
during the policy deployment phase.

Given a cell, the system must check if the current configu-
ration, q, is inside the cell. Let{ζq, γq, ρq} be the coordinate
values in the cell’s local cylindrical coordinate frame. The
corresponding point,qb = {ζq, γq, ρb}, on the cell boundary
is given by

ρb = ρ (ζq, γq)

√

1 + c2 − (c2 − 1) cos (2γq)√
2

. (4)

If ρq < ρb and0 < ζq < ζM , the configuration is in the cell.

B. Vector Field Definition

We use a family of level sets based on the parameterization
of the cell boundary to define the control vector field that flows
to the policy goal set. First consider the caseζM = 0 and
ζL = 0, where the cell boundary corresponds to the policy
goal set. IncreasingζM , while fixing ζL = 0, generates a
family of level sets that grow out from the goal; these are
termed theinner level sets, as shown in Figure 4-b. By fixing
ζM at its maximum value and increasingζL, theouter family
of level sets grows; these are also shown in Figure 4-b.

For a configuration within the cell, the corresponding level
set – either inner or outer – that passes through that configura-
tion must be determined. These level sets are governed by the
cap (second) portion ofρ (ζ, γ). First, rewrite this cap portion

in terms of new variablesζ ′M and ζ ′L. The appropriate level
set is determined by values forζ ′M andζ ′L that satisfy

ρf (ζ ′L, γq)

√

(ζ ′M − ζ ′L)
2 − (ζq − ζ ′L)

2

ζ ′M − ζ ′L
− ρq = 0 . (5)

For configurations within the inner family of level sets,ζ ′L = 0
and ζ ′M can be determined in closed-form from (5). If the
configuration is within the outer family of level sets, then
ζ ′M = ζM and we must determine the value ofζ ′L that
satisfies (5). Unfortunately,ζ ′L cannot be found in closed form.
Fortunately, (5) is a monotonic function ofζ ′L, which admits
a simple numeric root finding procedure. The corresponding
level set intersects the cell boundary atqL′ as shown in
Figure 4-b. Given the values ofζ ′M andζ ′L which determine the
corresponding level set, the level set normaln (q) is defined
by a closed-form analytic function.

The level set normal defines a constrained optimization over
the input space to determine the input value. In the simplest
case, let

u∗ = arg min
u∈U

[n (q) · A (q) u] s.t. n (q) · A (q) u < 0. (6)

Given the assumption that the level sets satisfy (3), a solution
is guaranteed to exist.

Using u∗ as the control input drives the system from the
outer level sets to the inner level sets, and then continuously
on to the goal. Forcing both the inner and outer level sets to
satisfy (3) at every point in the cell simplifies the proof of
finite time convergence. By virtue of (3), a solution to (6) is
guaranteed to exist and will bring the system configuration
to a “more inward” level set; thus, the system moves a finite
distance closer to the goal. Although a formal analytic proof
is lacking, experience shows that if the outermost level set
corresponding to the cell boundary satisfies (3), all interior
level sets will also satisfy (3).

Given the inputu∗, the reference vector field over the cell
is simply A (q) u∗. In reality, onlyu∗ is important; the vector
field is induced by the flow of the system given the control
inputs, and is never explicitly calculated.

C. Policy Deployment

To deploy a policy in this sequential composition frame-
work, we must specify the parameters that govern the location,
size, and shape of the cell. Given a specification of these pa-
rameters, the requirements from Section III-A must be verified.
Future work will develop automated deployment methods; we
currently use a trial-and-error process to specify parameters.

We begin deploying a policy by specifying that the policy
goal set is completely contained within the domain of other
policies; this allows the prepares graph to be defined later.
First, we specifyqg to lie within the target policy cell (set of
cells); this can be verified using (4) above. We initialize the
policy goal set by specifying the functionρ (0, γ) and elliptical
parametersβ andc from (2). We test that the policy goal set
boundary does not intersect the boundary of a target cell (union
of target cells) by testing the minimum distance between a
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point on the policy goal set boundary and the corresponding
point of the boundary of the target policies. We iteratively
adjust the parameters, including the policy goal set centerqg,
as needed until the policy goal set is fully contained in the
target cell(s). During this iterative process, we also testthat
the policy goal set is valid with respect to the mappingA (q)
and chosen input set.

Given a valid policy goal set, we grow the cell by specifying
the parameters ofρ (ζ, γ) that determine the rate of cell expan-
sion and cell shape, includingζL andζM . During this process,
we must confirm that the cell remains in the free configuration
space and that (3) is satisfied. Given these conditions, the
requirements that we can reach the goal in finite time and have
a test for cell inclusion are automatically satisfied given the
methods for defining the cell and vector field. To test that (3)is
satisfied, we use numerical optimization to find the maximum
value of (3) over the{ζ, γ} parameter space. Given a violation
of (3), we iteratively adjust the parameters as needed to ensure
the requirements are met.

To verify that a policy is safe with respect to obstacles,
we use the expanded cell described in Section III-A. In these
experiments, we graphically verify that the projection of the
expanded cell is free of intersection. We sample the{ζ, γ}
parameter space with a fine resolution mesh, and calculate the
corresponding points on the expanded cell surface. We project
the resulting expanded cell surface mesh into the workspace
and visually check for obstacle intersection, as shown in
Figure 2-b. This step can be automated by determining the
mesh edges that contribute to the silhouette curve based on
a simple facet normal test, and projecting those edges to the
workspace. The distances to closest obstacles can be tested
against the maximum error determined by the chosen mesh
resolution. The parameters governing cell size and shape are
adjusted, and both the collision and (3) tests are repeated.

Once all the policies are deployed, the final step is to specify
the prepares graph; this step is completely automated. The
automated graph builder checks the prepares relationship for
each policy against all other policies in the deployment; that is
we test for policy goal set inclusion against other cells or sets
of cells. For the policies presented here, the prepares testcan
be done by verifying that all points on the 1D policy goal set
boundary are contained in the domains of neighboring cells.
For policies that have a prepares relationship, we assign an
edge cost heuristically based on the path length between the
goal center and the target cells associated goal center, anda
factor for the policies relative complexity.

For the policies deployed in these experiments, this manual
deployment process generally takes between two and 30
minutes to fully deploy each policy. The deployment time
depends mainly on the tightness of the corridors and sharpness
of the turns being navigated. The final graph generation stepis
fully automated; it took several hours to run for the deployment
used in this paper. Once this step is complete, the deployment
is ready to use with the robot. The up-front cost of generating
the deployment is mitigated by the ability to reuse the policies
by planning multiple scenarios on the discrete graph.

Fig. 5. Laboratory robot.
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Fig. 6. Bounding ellipse. Fig. 7. A three-dimensional view of some of
the policies in the current deployment.

V. CURRENT RESULTS

The techniques described in Sections III and IV were
validated on our laboratory robot. This standard differential-
drive robot, shown in Figure 5, has a convex, roughly elliptical
body shape. To simplify implementation of the expanded cell,
the robot body and wheels were tightly approximated by an
analytic ellipse centered in the body coordinate frame (shown
in Figure 6). The car-like kinematic model has the form

A (q) =





cos θ 0
sin θ 0

0 1



 .

The inputs are forward velocity (m/s) and turning rate (ra-
dians/s). Although the robot is capable of zero-radius turns,
the steering rate was limited to model a traditional bounded
steering car. This limits the rate of expansion of the cells based
on (3); for a zero-radius turn the cell shape would only be
limited by the obstacles.

We allow multiple input sets,Ui, to account for changing
conditions. The system changes direction by switching be-
tween “Forward” and “Reverse” input sets; each having an
“Aggressive” and “Cautious” set of values. The numerical
values are based on the velocity limits of the motors, and
scaled back for cautious modes and the reverse input sets. For
computational convenience, this paper is restricted to convex
polygonalUi; this restriction is not fundamental. Each cell is
evaluated with respect to a specific choice ofUi.

A. Implementation

For these experiments, we define a set of polygonal ob-
stacles in a10m × 10m world, with several corridors and
openings as shown in Figure 8. A total of 271 policies
were deployed using the techniques described in Section IV;
of these, 15 separate policies prepared 31 different unions
of policy domains according to the extended definition of
prepares. A small number of cells are shown in Figure 7.

Given the collection of deployed policies and the associated
graph, the node associated with the policy centered in the
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lower corridor shown in Figure 8 is specified as the overall
goal of these experiments. An ordering of the policy graph
is generated using a Mini-max version of D* Lite [25] as
the discrete planner. Initially, the planner generates a global
ordering of the deployment graph based on the edge costs
determined during graph generation. If a valid path throughthe
ordered graph from a given policy node to the designated goal
node does not exist, then the node (and corresponding policy)
is flagged as invalid. As the planner executes, the effects of
invalid nodes propagate through the graph; as a result, a path
to the goal from a given node is guaranteed to exist if the node
remains valid. D* Lite provides an efficient way to replan in
the case where a policy status is changed to invalid after the
initial planning stage; for example if a passage way is found
to be blocked as the robot approaches.

During execution, the hybrid policy tests the current es-
timate of configuration to see which policy should be exe-
cuted. Given a configuration estimate, the search begins by
testing successors designated by the discrete planner for the
previously executed policy; if the current configuration is
included in one of these domains, the associated policy is
activated. If a designated successor containing the current
configuration is not found, and the previously executed policy
is still valid, the previous policy continues to execute until
the next update cycle. If the previously executed policy is
no longer active, whether due to a system perturbation or re-
planning in response to an environmental change, the current
implementation searches the graph according to the ordering
defined by the discrete planner.

The policy switching is completely automatic once the ini-
tial start command is given. The system stops when it reaches
the policy designated as the goal or, if the configuration is not
contained within a valid policy domain. If a valid policy is
found, the control is calculated as described in Section IV-B.
On our robot, the forward velocity and turning rate calculated
by the control policy is converted to wheel speeds used by the
low-level PID motor control loop.

B. Experimental Results

Seven representative tests on the robot are presented; a total
of 19 tests were conducted. The actual data was logged every
0.1 seconds during the robot experiment, and is plotted with
the obstacles shown in the figures. On the plots, the robot
symbols are shown every five seconds of travel time. Although
the policies were initially validated in simulation, the results
presented here are for actual robot runs.

For this round of experiments, the robot lacked an external
localization system, therefore the configuration estimates are
based on pure dead-reckoning. As a result of dead-reckoning
error, inherent in all wheeled-mobile robots, the robot would
have crashed into some obstacles had they been physically
present. Therefore, we ran the robot in an open space using
the deployment of policies that considered obstacles as shown
in the figures.

Figure 1-b shows the results of four of the robot runs from
four different initial conditions and the same goal node. To

Fig. 8. Path #5 requires the robot to back out of the corridor,and then
automatically switch to forward motion.

a) Path #6 b) Path #7

Fig. 9. Paths #6 and #7 show the execution of a K-turn to allow motion
around a sharp corner; the paths diverge in response to two policies that are
invalidated during run #7.

emphasize, the paths shown are from an actual robot run, and
are the result of policy ordering that is based on assigned edge
costs in the discrete graph; an explicit desired path is never
calculated. The paths are labeled (#1 - 4) clockwise from the
lower left.

The path labeled #5, shown in Figure 8, begins near the
same position as path #1 (shown in Figure 1-b); however,
the orientation is approximately 180 degrees different. Asthe
deployment also includes policies with the reverse input set,
the robot backs up and then moves forward to the goal. This
automatic policy switching requires no operator intervention.

Paths #6 and #7, shown in Figure 9, have two features that
demonstrate the flexibility of the approach. First, like path
#5, they demonstrate automatic forward/reverse switching.
In this case, the deployment does not include policies that
are expressive enough to turn the lower right corner in one
continuous motion. The robot initiates a K-turn, again withthe
policy switching automatically dictated by the policy ordering.
While this points to the need for future research in designing
more expressive policies, it also validates the basic approach
as the combination of simple policies with discrete planning
is still capable of generating expressive motions.

The second feature demonstrated by paths #6 and #7 is that
of re-planning in the discrete space of available policies.The
robot starts from slightly different initial conditions, but begins
to converge to the same vector field flow near the K-turn. Just
after the K-turn during run #7, the two policies crossing the
circular obstacle shown in Figure 9-b are flagged as invalid.
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This triggers a re-planning step using D* Lite that reorders
the policies, thereby inducing the robot to take “the long way
around” via path #7. This re-planning occurred in real time,
while the hybrid control policy was executing on the robot.

VI. CONCLUSION

The results of early simulations and the actual robot ex-
periments presented in this paper demonstrate the validityof
the approach, and provide a powerful demonstration of the
inherent flexibility of planning in the space of control policies.
Policies of the type outlined in this paper enable a large class
of discrete planners, including those that can handle temporal
logic specifications, to work with real, non-ideal, convex-
bodied systems operating in real environments. The sequential
composition techniques advocated in this paper are generally
applicable to a wide variety of control policies, beyond the
flow-through policies described in this paper, provided the
basic requirements that we outline are met.

The approach provides consistent results and maintains
the provable guarantees of the local control policies, while
enabling the flexibility to replan in real time. By not trying
to cover “every nook and cranny” of the free configuration
space, the number of policies is kept reasonable at the cost
of completeness. Limiting the size of the discrete planning
problem enables faster planning in the space of control poli-
cies. While the method is not complete, the ability to plan
and re-plan efficiently coupled with the guaranteed closed-
loop results validate the approach. Future work on automating
the deployment of local policies will address the completeness
issues associated with this approach by automatically deploy-
ing additional policies on-line.

As the ultimate success of the strategy depends on accurate
estimates of configuration, future experiments will incorporate
vision-based localization that allows the system to estimate its
configuration based on the position of known landmarks. This
will allow testing the control strategy with a fully integrated
autonomous system operating amongst physical obstacles.

Our immediate research plans are to extend the results to
more complicated configuration spaces and mappingsA (q),
such as those for the 4-variable Ackermann steered car and
a diff-drive towing a trailer. We are also striving for more
expressive local policies, and improvements to the deployment
scheme to allow faster, more automated deployment. We are
also implementing temporal logic based planning [24]. Finally,
we expect the benefits presented in this paper to become even
more obvious as we expand to systems with second-order
dynamics and bounds on available acceleration.
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