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Abstract— This paper proposes an approach to robust state
estimation for mobile robots with intermittent dynamics.
The approach consists of identifying the robot's mode of
operation by classifying the output of onboard sensors into
mode-specific contexts. The underlying technique seeks to
efficiently use available sensor information to enable accurate,
high-bandwidth mode identification. Context classification is
combined with multiple-model filtering in order to signifi-
cantly improve the accuracy of state estimates for hybrid
systems. This approach is validated in simulation and shown
experimentally to produce accurate estimates on a jogging
robot using low-cost sensors.

Index Terms— State Estimation, Classification, Multiple-
Model Filtering, Hybrid Systems
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I. INTRODUCTION Fig. 1. Flight and stance contexts correspond to data gestkra

Robust state estimation is a key enabling technology fofy, CCeleralon and, melor pouer sensors whle e obol et
reactive robotic systems. Mobile robots traversing roughonditions, such as calibrated accelerations close goand low motor
terrain often exhibit complex intermittent dynamics thet a power consumption. Conversely, the stance context comelsito positive
difficult to model accurately and thus limit the performanceigﬁzfgfg'tfonns_ geHSe‘;“g?éu?:egrggﬂge's‘;agtf'ﬂ‘a%m %g%‘goh‘gh power

of state estimation filters. Hybrid systems may frequently

switch between modes of operation and experience com-

plex transients during mode transitions. Transitions may

occur at rates similar to the bandwidth of onboard sensor€ontexts correspond to a classification of data generated
and cause traditional filters to diverge. These considmrati by onboard sensors when the robot operates in specific
motivate the construction of estimation systems which camodes. Fig. 1 shows an example of two contexts that
efficiently make use of all available sensor data to reliablycorrespond to a legged robot that alternates flight and
adapt to the current operating mode and generate accuratance modes. The mode of operation can be identified
state estimates. by positively classifying current sensor data in one of the
This paper presents a framework to take advantage of adlvailable contexts. The classification seeks to incorporat
measurements to capture as much information as possibés much available information as possible in order to
about the dynamics causing the robot's observed behaviadentify the modes at a bandwidth comparable to that of
Simulations of a bouncing ball show that the frameworkonboard sensors. Applied to hybrid systems, the mode
significantly increases the accuracy of estimating thesball identification mechanism can be combined with traditional
height. Experiments are also conducted on RHex, a highlynultiple-model filters to help select accurate models and
mobile six-legged robot which locomotes by rotating itssignificantly improve the accuracy of state estimates.
half-circle shaped compliant legs. Careful synchronizati With technological and scientific advances, the locomotion
of leg rotations produce different tripod gaits, enablingcapability and complexity of mobile robots is increasing.
the robot to walk, jog and run [1]. Of particular interest Fortunately, robot behavior can often be approximated with
is the estimation of RHex’s state while jogging, as thesimple models that abstract the complex robot-environment
gait produces complex dynamics with alternating flightinteractions [2]. More formally, consider the space of all
and stance phases. The challenge is to rely on fairlyobot states(), and the spac@),, of states that the simple
inexpensive onboard sensors such as accelerometers rfdel can express. Generallym (Q,,,) < dim (Q), and
accurately estimate the height of the robot in real time. Q,, is the image of the mapg : Q — Q,,.

The approach involves building an information processingrhe sensor spac® is the set of measurements produced
system that identifies a robot’s current dynamical contextby mapping the state € QQ to observationg € S through



g : Q — S. It is often the case with mobile robots that sub-optimal estimates when the mode is identified unam-
sensors measure components of the robot state that are rfmguously.

components of the model state. Hence, sensor measure- I

mentsy are mapped to measurements € S,, through b Classification

s S — S, whereS,, is the set of measurements Context identification through classification is used in the

that are compatible with the model. In a sengg, is a  computer vision community to enhance object recognition,

measurement of the model state described by the mappir@nd in the robotics community to adapt sensor parameters
h : Qn — S,. The following commutativity diagram to the environment, assess the accessibility of a terrain an

summarizes the relationships amo@gQ,,, S andS,,,: even build motion models [12], [13], [14], [15].
The essentially geometric classification effective in ma-
Q <, chine vision problems assumes that changes in signals are
s lms slow [12]. Classification of dynamic data is addressed by
Qm R S the robotics community, but under the assumption that the
world can be described with a set of discrete, static states
Il. RELATION TO PREVIOUS WORK [13]. Techniques that do account for continuously changing

The approach for context-based state estimation uses clfst-a tes assume that the dynamics are time-invariant [15]

e . ; . n summary, available techniques assume that either no
sification techniques to recognize robot dynamics an

multiple-model filtering to estimate the state. These tech\-?vxi/tr;a?nlqc; are involved, or that the dynamics do not change
niques are extended beyond their traditional applicatior\lNhen a. lied to field robots, classification cannot rel
domain of machine vision and fault detection to address the bp ' y

) . : ; : . 0n these assumptions because robot dynamics continually
intermittent and continuously changing dynamics of mobile
robots. alter sensor qgtpqt. Therefore, _the advocated apprqach for
context identification seeks to increase the bandwidth of
classification by incorporating as much sensor information
as possible. In addition, it accounts for time varying dynam
State estimation for hybrid systems is a problem longcs by combining classification and multiple-model filtgyin
addressed by the scientific community, with particularto capture dynamics that could no longer be classified with
emphasis on the fields of aircraft fault detection and radaavailable contexts.

target tracking (e.g. [3], [4], [5], [6], [7]). Some resehrc

in the robotics community is adopting multiple-model IIl. CONTEXT-BASED STATE ESTIMATION
approaches for fault detection in mobile robots ([8], [9]). The concept of context-based state estimation is to iden-
However, little attention has been paid to the specifics ofify robot operating modes by classifying onboard sensor
estimating the state of robots with hybrid dynamics. data into contexts that correspond to specific modes of
Conventional multiple model estimators based on theperation. Context classification essentially uses sensor
Kalman filter framework such as the Interacting Multi- information to build statistical models that recognize-sys
ple Models (IMM) update multiple filters in parallel and tem dynamics. Assuming the availability of models that
consolidate their output into a state estimate [10], [11].describe the different dynamics of a hybrid system, this
These techniques have two disadvantages. The first is thieformation helps estimators choose appropriate models fo
necessity of running multiple filters in order to capturestate estimation.

mode transitions. This can be computationally expensivei naive approach to state estimation would be to attempt
as the number of filters grows at least quadratically withto compute the state directly from51 oh7lomg:S — Q.

the number of modes. The second disadvantage is thdowever,m andh are generally not invertible, so system
sub-optimal accuracy of the estimate in the special casstate is estimated with filters that process model predictio
where the mode is identified unambiguously. This cas@nd sensor information mapped by. Since mg maps
calls for only updating the filter corresponding to the iden-sensor output to measurements compatible with the model,
tified mode, and not averaging its output with knowingly it may discard some information. The simpler the model
inaccurate estimates from other filters, as this would lowerand the greater the complexity of the dynamics, the less
the quality of the output. However, IMM-like techniques information is available to the filter and the longer it will
require that the complete bank of filters be updated irtake to converge. In contrast, context classification does
order to evaluate the accuracy of the model set. As aot necessarily depend on complex models and instead
consequence, they cannot deactivate unnecessary fileirs ageeks to efficiently incorporate all available information
still decide when to reactivate them. Thus, modes can be identified accurately and at bandwidth
The proposed approach attempts to remedy these problentomparable to that of onboard sensors. These advantages
It provides a technique that turns off irrelevant filters andcompel the use of classification rather than multiple-model
correctly re-initializes them when they become accuratefiltering for mode identification. Context classificatioropr
This saves computational cost and most importantly avoidsides multiple-model filters with accurate, high-bandidt

A. Multiple-model filtering



mode identification which helps improve their convergenceflgorithm 1 Steps of an IMM update [10]
rate and the accuracy of their state estimates.

[:Ei,ja Piyj} = filteri (ZL’]) (1)
A. Context Predicates and Contexts 1 1 1T I
] o . pij = ——=—=exp| 575 ;" (Likelihood)
Sensor output that is classified into contexts is called a 278, 5 2 o
context predicateas it helps identify the current context. T;; = Prob(it|j:—1) (Transition Probability) (2)
Context predicates can also be constructed from processed pi;Ti jProb; o
sensor data (e.g. IMU output), state estimates from a filter, F70bi; = S T Prob (Probability(j;:—1i¢) ) (3)
or filter components (e.g. residual). gERITRIT
Contextsare defined as the set of all predicate values z = ) w,;Prob,; (Mode State) 4)
that correspond to specific modes of operation. Different J
contexts are assumed to correspond to modes of operation P = meb.. (p.. + (2 — 25) (24, — x-)T)
. . . . . T ] 1] ] () 1) 1
with distinct dynamics, so dynamics are uniquely mapped ;
to their corresponding context under the presumption that S pi;Ti Prob;
the set of predicates is sufficiently rich to ensure that  Prob;, = g T P~Jb (Probability(i;)) (5)
contexts do not overlap. 2 22 pijTij Prob;
Contexts are constructed by operating the robot in differen A Z x; Prob; (Consolidated State) (6)
modes while collecting predicate values. The collection i
of predmates corr_espondmg to each mode is a bounded p — mebi (Pi ¥ (2 — @) (@i — x)T>
set inS that constitutes a context. Future predicate values ;

are expected to fall within the context’s bounds when the
corresponding mode is in operation. Thus, a robot’s mode
can be identified by classifying current predicates within

. FF X FF
available contexts. T e O FEE—Prob g e
To illustrate the concept, consider RHex executing a jog- Ty, Prob

ging gait, with onboard sensors measuring acceleration an
power consumption. During the flight phase, the measure
acceleration should be close to gravityg) with little
motor power consumed. During stance, the legs should st Prob g,
produce a positive acceleration and consume additiong "/TW .X Prob g,

power. This reasoning can be formalized by classifying st St

the acceleration and the power consumption predicates into

flight and stance contexts, as shown in Fig. 1. The phase OF’“F“gh‘M"de .S‘a"“M"de
of RHex’s gait could be identified by comparing current

values of the predicates to the two contexts. WhereaEl9: 2. A two-mode IMM spawnsV2 = 4 filters, one for each mode
additional contexts that capture modes such as unevesr%lquence. Their output is consolidated to form the statmat.

leg touchdown and foot slippage may be able to describe

the dynamics more accurately, for clarity this paper Onlyrespectively. Fig. 2 illustrates the cycle for a two-mode
considers two modes. This is sufficient to evaluate the'System (FF = Free Flight; St = Stance)

effectiveness of a collection of simple models at capturinthen the context predicates fall within the bounds of a

complex behavior. context, the corresponding mode is identified unambigu-
. A ously and filters should rely on the corresponding model
B. Multiple-Model Filtering to estimate the state, at the exclusion of other inaccurate
As introduced in Section Il-A, the leading multiple-model models. However, IMMs do not discard knowingly inac-
estimation technique is the IMM. Each IMM iteration starts curate estimates, which leads to suboptimal consolidated
with the assumption that any mode could have been istates.
effect at timet — 1, and any mode could be in effect at Two modifications of the IMM alleviate this problem. The
time ¢. For a system withV modes, a bank ofV? filters first is to change the transition probabilitiés, ;, in (2) as
is updated and the output of all filters is consolidateda function of the mode. If modé is recognized as being
Algorithm 1 details the steps involved in an IMM cycle. in operation, and;j represents all other modes, then set
Here, (i, j) {set of modes};filter; is based onthe model T;; = T;; = 1 andT;; = T;; = 0. This means that
of modei; i; represents the hypothesis that madis in  transitioning into the identified mode and staying in it has
effect at timet; z; ; is the state predicted byiiter; and  a probability of one, and transitioning into a wrong mode
corresponding to the sequengg, j;—1); r is the residual; and staying in it has a probability of zero. As expected,
and S and P are the innovation and process covariancesthis producesProb; = 1 and Prob; = 0.

=0




The second modification is to set = z; = x;;. This

formalizes the observation that once the system is in th
mode, it is expected to remain in it until a change of contex _.
is detected. In other words, the only valid hypothesis is€

ity

(i¢,i:—1), and since different modes correspond to distinc1§ N p—ve
dynamics, the output ofilter; (z;) in (1) is not combined ~ _SI‘ " onventional MM
to other estimates and instead constitutes the sole outp T |+ _Mode Transiton |
of the IMM. By ignoring the contribution of inaccurate % 2 et 8 10

mode states, the accuracy of the consolidated state is not
decreased unnecessarily. In addition, ignored filters can
now be deactivated with no impact on state estimates.
For example, when the two-mode system of Fig. 2 is in

flight, only zpr pr is updated while the other filters are o2r
deactivated. 0.15
When the context can no longer be identified unambigu _ °%

~B--g--3.__

ously, all filters can be restarted and the IMM resumess ©° O Pos, Conv
nominal operation. The output of the filters are consol- Aot odorolfesten 3 IlN L
idated (Equations 4 and 6), the mode probabilities ar¢ -o.os} ‘ o Voo iion
computed (Equations 3 and 5), and the mode transitio o 5 n s A o

point estimated (when the probability of one mode exceeds Time (s)
that of all others). Thus, context-based filtering combines
the advantage of two techniques. Classification provides
accurate mode identification when it is applicable, and

(b) Error in position and velocity estimates

multiple-model filtering estimates mode transition points i— .----------ooooooooo_- .
when no other identification means are available. o8l Estimated |
- —_ PVOEFF Transition 1
£ 06 -- Pro
IV. SIMULATION RESULTS 504 8 Start ot
- 2 04r Stop FF
As a first step towards robot deployment, context-baser® O StnFF
state estimation is implemented on a simulated hybric ? Moo Transition o
system. The setup consists of an elastic bouncing ball th: : T Y: - =
alternates flight and stance dynamics: Time (s)
P —g Ballistic Projectile
Tl K(x—1y)—g Loss-less Mass-Spring System (c) Mode Probabilities

where the stater is height, g is the acceleration due to

gravity andK andl, are the ball’s effective spring constant Fig. 3. fState estimat(;es obtained \/Nitr a conventiongl IIV:M lEaRMS
; ; : rrors of 6.34 cm and 15.5058 m/s for position and velocitymeges,

and, rest length, respectively. The task is to estimate thg . ei™ modifications to the IMM discard knowinglyaircurate

ball's height and velocity using the flight and stance modelsstimates and reduce RMS errorsita3 cm and0.0119 m/s.

and a noisy height sensor.

A. Conventional IMM . . . . o
o i . observation that when the ball is at high altitude, it is

The initial implementation deploys the conventional IMM ynown to be in flight, and when it is compressed, it is

of Fig. 2. For lack of better information,li; =  known to be in stance. Thus, classifying the ball's height

3. Vi,j €{FF, St}. Four filters are updated for this two- 55 high (flight) or low (stance) is a rational approach at
mode system, one per mode sequefiggj;—1 ). Equation 1 recognizing the dynamics.

outputs four states; ;, which are consolidated through (4) The classification fails in the immediate vicinity of touch-
and (6) intox, the ball state estimate (Fig. 3). Ovebs down, z = I, & &, with § < Iy, where it is unclear when

of simulation and one complete bounce cycle, the RMSpg pal transitions from one mode to the other. Therefore,
error for position estimates i6.34 cm and for velocity ihe contexts are defined as follows:

estimates isl5.5058 m/s. The poor accuracy results from
incorporating inaccurate stance estimates during flight an
flight estimates during stance.

« Flight Context:x > [y + ¢
o Stance Contextr < g — ¢
« Unidentified Contextiy — 0 <z <ly+ 4

B. Context-Based IMM Pseudo code for the modified IMM is provided in Al-
To address this problem, a flight and a stance contextgorithm 2. When the ball is recognized to be in flight
are introduced. The predicate is the height of the ball agz > [y + §) or in stancér < Iy — J), only the correspond-
estimated by the IMM. This choice is motivated by theing filterpp (zpr) or filters: (xs:) is updated. When



Algorithm 2 IMM Modifications 1sf
for i € {FF,St}, j = for i e {FF,St}, j=if 22
if (identified mode =){ if(flag:){ g °
T, =T;=1 updatefilter; (z;) g °
Tj,i = Tj,j =0 If(flagj){ § -5r
T =T; = T updatefiltem (lj)}} 1o . . . ® ¥ ¥
flagi =T, flag; = F}} | if(flag;} T
if(no mode identified) update filter; (x;)
for i € {FF, St}, j= E{ if (flag;){ Fig. 4. Rhex’s acceleration in the vertical direction asorded by on-
if{ flag; = F}{ updatefilterj (Iz)}} board accelerometer. The gravity bias is removed from the memsunt,
SO a zero acceleration corresponds to the robot standithgLsty strain
T = Tj = T4 } gauges detect stance phases (diamonds) and flight phasgss{cir
Py =P; = Pu}}
flagrp = flagsy =T
if(¢ < 0){i = St;j = FF} mass-spring parameters are set to the actual mass of the
elsef = FF;j = St} robot 8.5 Kg) and the spring constant that yields accept-
T;,; =0.7; T;; = 0.3 able state estimates is found to &800 N.m, a value close
T, =1; T;,; =0} to the physical spring constant estimatedé®0 N.m.

Kalman filters combine predicted and measured accelera-
tions and output consolidated estimates. When the strain

the context is unidentified, all four filters are updated. Thedauge measurements indicate that the robot is in stance
transition probabilities in (2) are adjusted so that when th Or in flight, the IMM only updates the corresponding
ball is descendingi < 0), the probability of transitioning filter. Transitions between flight and stance compress the
into stance is greater than the probability of staying irhtiig €S in complex sequences that make context identification
(e.9.Tsy.pr = 0.7; Teppr = 0.3). The inverse is true difficult. In these situations, the complete set of IMM
when the ball is ascendingrr.s; = 0.7; Tsy.5¢ = 0.3). models are updated. The output is then integrated twice
Fig. 3(a) shows that this strategy significantly improvestO extract the state. . _
the accuracy of the estimated velocity. RMS errors ard he resulting height estimates compare favorably with
reduced t00.13 cm and 0.0119 m/s for position and 9round truth, as shown in Fig. 5(a). The mean and standard
velocity, respectively. Fig. 3(b) shows that estimate er_deyiation of the RMS difference between the estimated
rors are small until touchdown and rise only modestlyheight and the ground truth measurement ol2rexper-
thereafter, in sharp contrast with the estimate errors ofments is1.85 cm and0.37 cm, respectively. Fig. 5(b)
the conventional approach. This illustrates the benefit ofhows the system’s estimate of mode probabilities, the
discarding knowingly inaccurate estimates. Fig. 3(c) show!ransition points from one mode to the other, and the
the selective deactivation of unnecessary filters durighfli Selective activation of the filters.

and stance as well as the transition point from one moddhe quality of the estimates underlines the significance

to the other. of the mass-spring model's contribution. Through the vir-
tual spring, the model anchors the robot to the ground
V. EXPERIMENTATION RESULTS and maintains its height within the vicinity df. Thus,

This technique is extended to RHex, where the task is to edy expressing the fact that the robot cannot leave the
timate the jogging robot’s height using onboard acceleromground, the simple model is able to significantly mitigate
eters. RHex’s locomotion mechanism is characterized byhe problem of filter divergence. For comparison, height
six compliant legs that confer to the robot a significantestimates obtained by directly integrating the acceleteme
capacity to overcome obstacles, but also generate largge plotted. As expected, the model-less estimates diverge
dynamics that are difficult to model [16], [2]. rapidly.

A. State Estimation With Leg Strain Gauges B. State Estimation Without Leg Strain Gauges

Fig. 4 shows RHex’s vertical acceleration when jogging.Strain gauges enable accurate mode detection, but they
The frequency of the signal corresponds to that of theare expensive and complex to install on circulating legs.
gait alternating flight and stance phases. The identity oAccelerometers may provide a less expensive alternative.
the mode in operation can be inferred from strain gauge$his can be achieved by reasoning about what acceleration
that measure leg compression and thus detect whether thalues are expected in each mode. For instance, calibrated
robot is in flight or in stance [17]. Therefore, strain gaugeaccelerations close teg are expected during flight, and
measurements serve as a predicate for the flight and stanpesitive accelerations are expected during stance. Thus,
contexts. instead of identifying the mode by classifying strain gauge
For simplicity, RHex is modeled as a bouncing ball, usingmeasurements, the strategy is to classify accelerometer
the ballistic flight and elastic mass-spring models. Theoutput as follows:
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cannot be classified, IMMs resume conventional operation
for estimating state and mode transition points, which in
turn helps improve context identification. Thus, combining
context classification and multiple-model filtering impesv
the bandwidth and accuracy of state estimation.

Ongoing research is extending context classification to the

used by a multiple-model system. The technique is also

being applied to systems with smoothly varying dynamics,

@

where the challenge is to estimate the accuracy with which

the dynamics are recognized, infer an assessment of model
accuracy, and adapt filter parameters accordingly.

Free Flight Mode
9 ~

Stance Mode\

Start St
Stop FF
Start FF
Stop St

Switch
Modes

15 155 16 1.65 [1]
Time (s)
(b) (2l
Fig. 5. The modified IMM yields relatively accurate estimatéfblex’s
height while jogging. Here, the robot’s behavior is modelitdraan elastic [3]
bouncing ball.
(4]
« Flight Context:i < —6 m/s* [5]
« Stance Contexti > 0
« Unidentified Context0 > & > —6 m/s’>. Accelerom- 6]

eter output within this context indicates that the robot
is transitioning between flight and stance. Context
bounds are derived from experiment observation.

State estimates obtained with this contextual classifinati

are virtually indistinguishable from the results of Fig. 5. [8]
The mean and standard deviation of the RMS error @2er
experiments ar€.09 cm and0.39 cm, respectively, which
compare favorably to the values obtained with the help[®]
of strain gauges. This result indicates that accurate stajgy
estimation could be performed using low-cost sensors such
as accelerometers.

(7]

[11]

VI. CONCLUSION [12]

Context-based state estimation enables accurate, high-
bandwidth mode identification for hybrid systems. The[13]
approach classifies sensor measurements in mode-specific
contexts to recognize the dynamics and help multiple-[l4]
model filters choose appropriate models.

This research extends the applicability of classification t
hybrid systems with time varying dynamics and introduceﬁlﬂ
modifications to the IMM algorithm in order to take
advantage of independent mode identification. When clas-
sification recognizes the dynamics, the mode is identified®!
at a bandwidth similar to that of onboard sensors. Modified17)
IMMs use this information to selectively update approgriat
filters and deactivate others. When the changing dynamics
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