
Valet Parking Without a Valet

David C. Conner†, Hadas Kress-Gazit‡, Howie Choset†,Alfred A. Rizzi†, and George J. Pappas‡

Abstract— What would it be like if we could give our
robot high level commands and it would automatically execute
them in a verifiably correct fashion in dynamically changing
environments? This work demonstrates a method for generating
continuous feedback control inputs that satisfy high-level speci-
fications. Using a collection of continuous local feedback control
policies in concert with a synthesized discrete automaton, this
paper demonstrates the approach on an Ackermann-steered
vehicle that satisfies the command “drive around until you
find an empty parking space, then park.” The system reacts to
changing environmental conditions using only local information,
while guaranteeing the correct high level behavior. The local
policies consider the vehicle body shape as well as bounds
on drive and steering velocities. The discrete automaton that
invokes the local policies guarantees executions that satisfy
the high-level specification based only on information about
the current availability of the nearest parking space. This
paper also demonstrates coordination of two vehicles using the
approach.

I. INTRODUCTION

A major goal in robotics is to develop machines that
perform useful tasks with minimal supervision. Instead of
specifying each small detail, we would like to describe the
high level task, and have the system autonomously execute
in a manner that satisfies that desired task. Unfortunately,
constraints inherent in mobile robots, including nonlin-
ear nonholonomic constraints, input bounds, obstacles/body
shape, and changing environments, interact to make this a
challenging problem.

This paper presents an approach that addresses this chal-
lenge by combining low-level continuous feedback control
policies with a formally correct discrete automaton. The
composition and execution strategy is guaranteed to satisfy
the high-level behavior for any initial state in the domain
of the low-level policies. The approach can handle robots
with complex dynamics as well as a variety of nonholonomic
constraints. It allows the robot to react to local information
during the execution, and supports behaviors that depend on
that information. Furthermore, given a collection of local
feedback control policies, the approach is fully automatic
and correct by construction.

The approach combines the strengths of control theo-
retic and computer science approaches. Control theoretic
approaches offer provable guarantees over local domains;
unfortunately, the control design requires a low-level speci-
fication of the task. In the presence of obstacles, designing
a global control policy becomes unreasonably difficult. In
contrast, discrete planning advances from computer science
offer the ability to specify more general behaviors and
generate verifiable solutions at the discrete level, but lack the
continuous guarantees and robustness offered by feedback.

This work is partially supported by National Science Foundation EHS
0311123 and Army Research Office MURI DAAD 19-02-01-0383.

†Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213 {dcconner,choset,arizzi}@ri.cmu.edu

‡GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104
{hadaskg,pappasg}@grasp.upenn.edu

Fig. 1. The environment has 40 parking spaces arranged around the middle
city block. The high-level specification encodes “drive around until you find
a free parking space, and then park.” This example shows the path taken
from the time the vehicle enters the area until it parks in the first open
parking space it encounters. There are four remaining open spaces.

By using a collection of local feedback control policies
that offer continuous guarantees, and composing them in
a formal manner using discrete automata, the approach
automatically creates a hybrid feedback control policy that
satisfies a given high-level specification without ever plan-
ning a specific configuration space path. The system con-
tinuously executes the automaton based on the state of the
environment and the vehicle by activating the continuous
policies. This execution guarantees the robot will satisfy its
intended behavior.

As a demonstration of the general approach, this paper
presents a familiar example: a conventional Ackermann
steered vehicle operating in an urban environment. Figure 1
shows the environment, and the results of one simulation
run. This run is a continuous execution of an automaton
that satisfies the high-level specification “drive around the
environment until you find a free parking space, and then
park.” The paper discusses the design and deployment of the
local feedback policies (Section II), the automatic generation
of automata that satisfy high level specifications (Section III),
and the continuous execution (Section IV). While there has
been work done in the past concerning a self parking car [1],
and nowdays such a car is even commerically available, this
paper focuses on the more general problem of specifying
the high level behaviors, and can capture richer and more
involved tasks.

The approach to composing low-level policies is based
on our earlier work using sequential composition [2], [3].
Sequential composition depends on well defined policy do-
mains and well defined goal sets to enable tests that the goal
set of one policy is contained in the domain of another. For
idealized (point) systems, several techniques are available for
generating suitable policies [4], [5], [6], [7], [8]. This paper
extends the prior work in sequential composition to a more

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

TuB9.4

1-4244-0912-8/07/$25.00 ©2007 IEEE. 572

L

(x, y)
θ

φ

Fig. 2. Car-like system with Ackermann Steering. The inputs are forward
velocity and steering angle velocity.

complex system model by considering Ackermann steering,
input bounds, and the shape of the vehicle.

Building upon the sequential composition [2] idea, recent
work has shown how to compose local controllers in ways
that satisfy temporal specifications given in temporal logic
[9], rather than final goals. In [10], [11], [12] powerful model
checking tools were used to find the sequence in which the
controllers must be activated in order for the system to satisfy
a high level temporal behavior. While these approaches
can capture many interesting behaviors, their fundamental
disadvantage is that they are “open loop” solutions. They find
sequences of policies to be invoked rather than an automaton,
and therefore cannot satisfy reactive behaviors that depend
on the local state of the environment, as determined at run
time, or handle uncertain initial conditions. The planning
community is dealing with “temporally extended goals” as
well [13].

This work builds on the approach taken in [14] which
is based on an automaton synthesis algorithm introduced
in [15]. There, an automaton was created which enabled
the robot to satisfy reactive tasks. This paper lifts several
restrictions imposed in [14]. Here the robot model is no
longer an idealized, fully actuated point robot and there
is no need to partition the workspace into polygonal cells.
Furthermore, the automaton execution is different, allowing
for “interrupt” type inputs that can induce behavior changes
at any time. This extension of [14] allows one to specify
“safety critical” tasks such as emergency stop. This paper
also allows for uncertainty in the initial position of the
vehicle, represented as a set of initial conditions rather than
a single one.

II. LOCAL CONTINUOUS FEEDBACK CONTROL POLICIES

Local continuous feedback control policies form the foun-
dation of the control framework; the policies are designed
to provide guaranteed performance over a limited domain.
Using continuous feedback provides robustness to noise,
modeling uncertainty, and disturbances. This section presents
the system model used in the control design, the formulation
of the local policies, and the method of deployment.

A. System Modeling
This paper focuses on the control of a rear-wheel drive car-

like vehicle with Ackermann steering, shown schematically
in Figure 2. The two rear wheels provide the motive force
via traction with the ground; the two front wheels provide
steering.

The vehicle pose, g, is represented as g = {x, y, θ}; (x, y)
is the location of the midpoint of the rear axle with respect
to a global coordinate frame, and θ is the orientation of the
body with respect to the global x-axis. The angle of the
steering wheel is φ ∈ (−φmax, φmax), a bounded interval.

The nonholonomic constraints inherent in the rolling con-
tacts uniquely specify the equations of motion via a non-
linear relationship between the input velocities and the body

pose velocity. Let the system inputs be u = {v, ω} ∈ U ,
where U is a bounded subset of IR2, v is the forward velocity,
and ω is the rate of steering. The complete equations of
motion are

ẋ
ẏ

θ̇

φ̇

 =

cos θ 0
sin θ 0

1
L tan φ 0

0 1

[
v
ω

]
(1)

The system evolution is also subject to configuration
constraints. The body pose is constrained by the interaction
of body shape with obstacles in the environment. The pose is
further constrained by local conventions of the road, such as
driving in the right lane. For safety and performance reasons,
we allow further steering angle constraints at higher speeds.
The system inputs are constrained based on speed limits in
the environment and system capabilities.

B. Local Policy Development

The hybrid control framework uses local feedback control
policies to guarantee behavior over a local domain. These
local policies are then composed in a manner that allows
reasoning on a discrete graph to determine the appropriate
policy ordering that induces the desired global behavior.
In order for the policies to be composable in the hybrid
control framework, the individual policies must satisfy sev-
eral requirements: i) domains lie completely in the free
configuration space of the system, ii) under influence of a
given policy the system trajectory must not depart the domain
except via a specified goal set, iii) the system must reach
the designated goal set in finite time, and iv) the policies
must have efficient tests for domain inclusion given a known
configuration [3]. This paper focuses on one design approach
that satisfies these properties.

The navigation tasks are defined by vehicle poses that must
be reached or avoided; therefore, this paper defines cells in
the vehicle pose space. Each cell has a designated region of
pose space that serves as the goal set. Over each cell, we
define a scalar field that specifies the desired steering angle,
φdes, such that steering as specified induces motion that leads
to the goal set.

The approach to defining the cell boundary and desired
steering angle is based on a variable structure control ap-
proach [16]. The cells are parameterized by a path segment
in the workspace plane, as shown in Figure 3-a. The path is
lifted to a curve in body pose space by considering the path
tangent vector orientation as the desired orientation. One end
of the curve serves as the goal set center.

To perform the control calculations, the body pose is
transformed to a local coordinate frame assigned to the
closest point on the path to current pose. The policy defines
a boundary in the local frames along the path. Figure 3-
b shows the cell boundary defined by the local frame
boundaries along the path; the interior of this ‘tube’ defines
the cell. The size of the tube can be specified subject to
constraints induced by the path radius of curvature and the
vehicle steering bounds. The cell can be tested for collision
with an obstacle using the technique outlined in [3].

We define a surface in the local frame to serve as a
“sliding surface” for purposes of defining a desired steering
angle [16]. To generate a continuous steering command, the
sliding surface is defined as a continuous function with a
continuous bounded derivative; a blending zone is defined
around the sliding surface. Outside the blending zone, the

573

(a) (b)

Fig. 3. Control policy based on [16]: a) workspace path with local frame
defined, b) the cell boundary forms a “tube” around the curve in pose space.
The sliding surface is shown in the cell interior.

desired steering is set to a steering limit, φlim, where |φlim |≤
φmax. The sign of φlim depends on the current direction of
travel (forward/reverse) and whether the current body pose
in local coordinates is above or below the sliding surface.
Inside the blending zone, let

φdes = ηφlim + (1 − η)φref , (2)

where η ∈ [0, 1] is a continuous blending function based on
distance from the sliding surface, and φref is the steering
command that would cause the system to follow the sliding
surface. Thus, (2) defines a mapping from the body pose
space to the desired steering angle for any point in the
cell. The sliding surface is designed such that steering
according to φdes will cause the system to move toward the
sliding surface, and then along the sliding surface toward
the specified curve in the desired direction of travel. At the
boundary of the cell, the desired steering must generate a
velocity that is inward pointing, which constrains the size
and shape of a valid cell.

For a closed-loop policy design, the system must steer
fast enough so that the steering angle converges to the
desired steering angle faster than the desired steering angle
is changing. This induces an additional constraint on the
input space. Given this constraint, a simple constrained
optimization is used to find a valid input. Each policy is
verified to insure that a valid input exists over its entire
domain.

The vehicle closed-loop dynamics over the cell induce a
family of integral curves that converge to the curve speci-
fying the policy. To guarantee that an integral curve never
exits the cell during execution, we impose one additional
constraint. Define the steering margin, φmargin, as the mag-
nitude of the angle between the desired steering along the
cell boundary and the steering angle that would allow the
system to depart the cell. During deployment, the policies
must be specified with a positive steering margin. To use
the control policy, we require that | φdes − φ |< φmargin;
otherwise, the system halts and steers toward the desired
steering angle until | φdes − φ |≤ φmargin. Invoking the
policies this way guarantees that the system never departs
the cell, except via the designated goal set; that is, the policy
is conditionally positive invariant [3]. As the vehicle never
stops once the steering policy becomes active, the system
reaches the designated goal in finite time.

C. Local Policy Deployment

To set up the basic scenario, we define the urban parking
environment shown in Figure 1. The regularity of the envi-
ronment allows an automated approach to policy deployment.

First, we specify a cache of local policies using the generic
policy described above. The cache uses a total of 16 policies:

Fig. 4. Parking behavior induced by the composition of local policies. The
feedback control policies guarantee the safety of the maneuver.

a policy for normal traffic flow, four policies associated with
left and right turns at the intersections, six policies associated
with parking, and five associated with leaving a parking
space. Ten of the policies move the vehicle forward, and
six move the vehicle in reverse. Each policy in the cache is
defined relative to a common reference point. At this point,
the specification of the free parameters for each policy in the
cache is a trial and error process that requires knowledge of
the environment, the desired behaviors, and some engineer-
ing intuition. During specification of the policies, we verify
that the convergence and invariance properties are satisfied,
and that the policies are free of obstacle collision based on
the road layout.

Policies from the cache are then instantiated at grid
points defined throughout the roadways. This is done offline
based on knowledge of the local roadways. The instantiation
process selects a subset of the policies in the cache based on
the grid point location. Given the cache and specified grid
points, the instantiation process is automated. Normally, the
test for obstacle collision would be conducted as the policies
are deployed, but the regularity of the roadway renders this
unnecessary. For intersections, the four turning policies are
deployed for each travel direction, along with the basic traffic
flow policy. For straight traffic lanes, the grid points lie in
the middle of the traffic lanes aligned with the front of the
parking space markers; orientation is defined by the traffic
flow.

If a potential parking space is adjacent to the grid point, a
special parking policy is instantiated. Although considered
a single policy by the automaton, each parking policy is
actually composed of several policies from the cache. The
parking component policies are only instantiated if the park-
ing behavior is invoked by the global parking automaton
(Section III); at this point execution control switches to
a local parking controller encoded as a partial order of
the parking policies. Figure 4 shows an example parking
maneuver induced by the composition of the local feedback
control policies. For the region defined in Figure 1, there
are a total of 306 instantiated policies, including 40 parking
policies associated with the 40 possible parking spaces.

As part of the instantiation process, we test for goal set
inclusion pairwise between policies. If the goal set of one
policy is contained in the domain of a second, the first is
said to prepare the second [2]. This pairwise test defines
the prepares graph, which encodes the discrete transition
relation between policies. This graph forms the foundation
of the automaton synthesis approach described in the next
section. The policies in the cache are specially defined so that
policies instantiated at neighboring grid points prepare one
another appropriately. The policy specification, instantiation,
and prepares testing is done off-line, prior to automaton
synthesis.

574

III. AUTOMATON SYNTHESIS

This section describes the method used to create the
automaton that governs the local policies’ switching strategy.
This automaton is guaranteed to produce paths, if they exist,
that satisfy a given specification.

A. The Synthesis Algorithm

We are given a set of binary inputs (e.g. whether the closest
parking spot is empty), a set of outputs (e.g. whether or not
to activate policy Φi), and a desired relationship between
the two (e.g.“if you sense an empty parking space, invoke
a parking policy”). The realization or synthesis problem
consists of constructing a system that controls the outputs
such that all of its behaviors satisfy the given relationship,
or determine that such a system does not exist.

When the relationship is given in Linear Temporal Logic
(LTL) [9], it is proven that the complexity of the synthesis
problem is doubly exponential in the size of the formula
[17]. However, by restricting ourselves to a subset of LTL, as
described in Section III-B, we can use the efficient algorithm
recently introduced in [15]. This algorithm is polynomial
in the number of possible states. We present an informal
overview of the algorithm, and refer the reader to [15] for a
full description.

The synthesis process is viewed as a game played between
the system, which controls the outputs, and the environment
which controls the inputs. The two players have initial
conditions and a transition relation defining the moves they
can make. The winning condition for the game is a formula
σ encoded with a fragment of LTL. The way the game
is played is that at each step, first the environment makes
a transition according to its transition relation, and then
the system makes its own transition (constraints on the
system transitions include obeying the prepares graph). If
the system can satisfy σ no matter what the environment
does, we say that the system is winning and we can extract
an automaton. However, if the environment can falsify σ we
say that the environment is winning and the desired behavior
is unrealizable.

The synthesis algorithm [15] takes the initial conditions,
transition relations, and winning condition, then checks
whether the specification is realizable. If it is, the algorithm
extracts a possible, but not necessarily unique, automaton
that implements a strategy that the system should follow in
order to satisfy the desired behavior.

B. Writing Logic formulas

In this work we use Linear Temporal Logic (LTL) formu-
las. We refer the reader to [9] for a formal description of
this logic. Informally, these logic formulas are built using a
set of boolean propositions, the regular boolean connectives
‘not’(¬), ‘and’(∧), ‘or’ (∨) and temporal connectives. The
temporal connectives include: ‘next’ (©), ‘always’ (�) and
‘eventually’ (�). These formulas are interpreted over infinite
sequences of truth assignments to the propositions. For
example, the formula ©(p) is true if in the next position p is
true. The formula �(q) is true if q is true in every position in
the sequence. The formula ��(r) is true if always eventually
r is true, that is, if r is true infinitely often.

The input to the algorithm is an LTL formula

ϕ = (ϕe ⇒ ϕs) .

ϕe is an assumption about the inputs, and thus about the
behavior of the environment, and ϕs represents the desired
behavior of the system. More specifically,

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ; ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

ϕe
i and ϕs

i describe the initial condition of the environ-
ment and the system. ϕe

t represents the assumptions on the
environement by constraining the next possible input values
based on the current input and output values. ϕs

t constrains
the moves the system can make and ϕe

g and ϕs
g represent the

assumed goals of the environment and the desired goals of
the system, respectively. For a detailed description of these
formulas the reader is referred to [14].

Translating this formula to a game, the initial condition is
ϕe

i ∧ ϕs
i , the transition relations for the players are ϕe

t and
ϕs

t , and the winning condition is σ = (ϕe
g ⇒ ϕs

g). Note
that there are two “ways” for the system to win. It wins if
either ϕs

g is satisfied, i.e. the system reaches its goals, or
ϕe

g is falsified. The later case implies that if the environment
does not satisfy its goals (either a faulty environment or the
system interfered), then a correct behavior of the system is
no longer guaranteed. Furthermore, if during an execution
of the automaton the environment violates its own transition
relation, the automaton is no longer valid. The implication
of this is discussed in Section IV.

C. Parking formula

In our basic scenario, a vehicle is searching for an empty
parking space, and parks once it finds one; therefore we
define one input, ‘park’, which becomes true when an empty
parking space is found. The policy, Φi, to be activated is an
output1.

1) Assumptions on the environment: Initially there is no
parking near the vehicle therefore ϕe

i = ¬park.
We can only determine whether there is a free parking

space if we are in a policy next to it. This means that ‘park’
cannot become true if the vehicle is not next to a parking
space or in one. Also, for implementation reasons, we assume
that the input ‘park’ remains true after parking.

ϕe
t =

�([(¬(∨i∈ParkPolicyΦi)) ∧
(¬(∨j∈PreparesParkPolicyΦj))]
⇒ ¬© park)∧

�((park ∧ (∨i∈ParkPolicyΦi)) ⇒ ©park)

We have no assumptions on the infinite behavior of the
environment (we do not assume there is an empty parking
spot), therefore ϕe

g = ��(TRUE).
2) Constraints on the behavior of the vehicle (system):

Initially the vehicle must be in the domain of an initial policy,
ϕs

i = ∨i∈InitialPolicyΦi.
The allowable transitions are encoded as

ϕs
t =

∧
i �(Φi ⇒ (©Φi ∨j∈SuccessorsOfPolicyi

©Φj))∧
i∈ParkPolicy �(¬© park ⇒ ¬© Φi)∧
�(©park ⇒ (∨i∈ParkPolicy © Φi))

The first line encodes the transitions of the prepares graph
from Section II-C. The vehicle cannot park if there is no
parking space available, as indicated by the ‘park’ input on
the second line. The third line states that if there is an empty
parking space, it must park; removing this line may allow

1For ease of reading, we define a different output for each policy. In the
actual implementation we encode the policy numbers as binary vectors.

575

the vehicle to pass an open spot before parking. Additional
outputs can be added to the transition relation. For example,
policies that cause left or right turns can trigger appropriate
signals. The initial signal status should also be set in ϕs

i .
Finally for the goal, we add a list of policies the vehicle

must visit infinitely often if it has not parked yet, thus ϕs
g =

∧i∈V isitPolicy��(Φi∨park). These policies define the area
in which the vehicle will look for an available parking space.
Note that the goal condition is true if either the vehicle visits
these policies infinitely often (when there is no parking space
available) or it has parked.

IV. CONTINUOUS EXECUTION OF DISCRETE AUTOMATA

The synthesis algorithm of Section III-A generates an
automaton that governs the execution of the local policies;
however, the continuous evolution of the system induced by
the local policies governs the state transitions within the
automaton. In this section, we discuss the implementation
of the policy switching strategy.

A. Execution

A continuous execution of the synthesized automaton
begins in an initial state q0 that is determined by linearly
searching the automaton for a valid state according to the
initial body pose of the vehicle. From state qi, at each time
step2, the values of the binary inputs are evaluated. Based
on these inputs, all possible successor states are determined.
If the vehicle is in the domain of policy Φl, which is active
in a successor state qj , the transition is made. Otherwise,
if the vehicle is still in the domain of Φk, which is active
in state qi, the execution remains in this state. The only
case in which the vehicle is not in the domain of Φk, or in
any successor Φl, is if the environment behaved “badly.” It
either violated it’s assumptions, thus rendering the automaton
invalid or it caused the vehicle to violate the prepares graph
(e.g. a truck running into the vehicle). In the event that a
valid transition does not exist, the automaton executive can
raise an error flag, thereby halting the vehicle and requesting
a new plan. This continuous execution is equivalent to the
discrete execution of the automaton [10], [12].

B. Guarantees of correctness

We have several guarantees of correctness for our system,
starting from the high level specifications and going down to
the low level controls. First, given the high level specification
encoded as an LTL formula, the synthesis algorithm reports
whether the specification is realizable or not. If an incon-
sistent specification is given, such as, “always keep moving
and if you see a stop light stop,” the algorithm will return
that there is no such system. Furthermore, if a specification
requires an infeasible move in the prepares graph, such as
“always avoid the left north/south road and eventually loop
around all the parking spaces,” the algorithm will report that
such a system does not exist.

Second, given a realizable specification, the algorithm
is guaranteed to produce an automaton such that all its
executions satisfy the desired behavior if the environment
behaves as assumed. The construction of the automaton
is done using ϕe

t which encodes admissible environment

2The policies are designed as continuous control laws; however, the
implementation on a computer induces a discrete time step. We assume
the time step is short compared to the time constant of the closed-loop
dynamics.

behaviors; if the environment violates these assumptions,
the automaton is no longer correct. The automaton state
transitions are guaranteed to obey the prepares graph by
the low-level control policy deployment unless subject to
a catastrophic disturbance (e.g., an out of control truck).
Modulo a disconnect between ϕe

t and the environment,
or a catastrophic disturbance to the continuous dynamics,
our approach leads to a correct continuous execution of
the automaton that satisfies the original high level desired
behavior.

V. RESULTS

The approach is verified in a simulation executed using
MATLABTM. First, the workspace is laid out, and a cache of
policies is specified. Second, the policies are automatically
instantiated in the configuration space of the vehicle, and
the prepares graph is defined. Next, based on the desired
scenario, an LTL formula is written. The LTL formula is
then given to the automatic synthesis algorithm implemented
by Piterman, Pnueli and Sa’ar [15] on top of the TLV
system [18]. At this point, the resulting automaton is used
to govern the execution of the local policies, based on the
local behavior of the environment.

In the following examples, the workspace is the one shown
in Figure 1, with the 306 policies instantiated as described
in Section II-C. In the LTL formulas, the visit policies
correspond to the 8 lanes around the parking spaces (4 going
clockwise and 4 going counter clockwise), and the initial
policies correspond to the 10 entry points to the workspace.
Initially, 35 of the 40 parking spaces were randomly specified
as occupied.

A. Basic parking scenario

The basic parking scenario corresponds to the LTL for-
mula described in Section III-C. For each run, a new vehicle
was introduced at a random entrance, while the parking
spaces were filled according to the previous run. As the
automaton executes, if a parking policy is a successor to
the current state, the empty/occupied status is checked via a
local sensor. This work does not address the required sensor,
but assumes a binary output. Transition to the parking policy
is enabled if the associated space is empty. If the transition is
enabled, other transitions are disabled until the vehicle pose
enters the domain of the parking policy, at which point the
control shifts to the local parking controller.

Six runs were simulated using the global parking automa-
ton; Figure 5 shows the results for two of these runs. In Run
#4 the vehicle parks in the first available parking space. In
Run #6, there are no parking spaces available; therefore, the
vehicle continues to circle past every possible parking space,
waiting on another vehicle to leave.

B. Hazard

To provide more expressive behavior, we define an ad-
ditional input ‘hazard’ that allows the vehicle to react to
external changes in the environment not encoded in the
instantiated policies. These hazards could include blocked
roads or pedestrians detected using a proximity sensor or
vision based system. We allow the input ‘hazard’ to change
at any time and we require the vehicle to stop when ‘hazard’
is true, thus interrupting the execution of the feedback con-
trol policy. Once ‘hazard’ becomes false again, the vehicle
resumes moving under feedback control. We do not show the
exact additions to the basic formula due to space constraints.

576

Run #4 Run #6
Fig. 5. Two executions of the basic scenario. The initial conditions for each
run are circled. The first five executions successfully find a parking space;
the last execution continues to loop as no parking spaces are available.

Run #7 - a Run #7 - b
Fig. 6. Two snap shots of the multiple vehicle scenario. The vehicle heading
east stops in response to the timed hazard signal to allow the other vehicle
to travel through the intersection.

To demonstrate this capability, we encoded a timed ‘stop-
light’ at the intersections, and rewarded vehicle #6’s patience
by having one vehicle leave its parking space and exit the
area. The leaving behavior is encoded as a new automaton
with an exit path as its goal. The ‘stop-light’ behavior is
coded with an external timer that raises a hazard flag with
policies that enter an intersection in a particular direction.
When the timer expires, the hazard flag is raised for the
crossing lanes, and after another brief period the original
hazard flags are lowered allowing the vehicles to cross. The
cycle repeats periodically.

Figure 6 shows the continuation of Run #6 with the
hazard inputs added to the parking automaton, and a ‘leaving
automaton’ with hazards added to control the second vehicle.
This gives a rudimentary form of multi-vehicle coordination.
In the first snapshot, vehicle #6 is just beginning to approach
the intersection, while vehicle #7 stops for the light. The
second snapshot shows vehicle #7 dutifully waiting for the
signal, while vehicle #6 has passed through the intersection.
Although not shown, after the ‘stop-light’ changes, vehicle
#7 exits the area and vehicle #6 continues around under the
control of the global parking automaton and parks in the
newly open spot.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated, through the parking
example, how high level specifications containing multiple

temporally dependent goals can be given to a realistic robot,
which in turn automatically satisfies them. We synthesized
an automaton that forces the vehicle to park, turns the vehicle
signal lights on and off appropriately, and obeys hazard
conditions. By switching between low level feedback control
policies and moving in a “well behaved” environment, the
correctness of the robot’s behavior is guaranteed by the
automaton. The system satisfies the high-level specification
without needing to plan the low-level motions in configura-
tion space.

We plan to extend this work in several directions. At
the low level, we wish to consider more detailed dynamics.
At the high level, we intend to formally address multiple
robot coordination with more complex traffic conditions, and
formally verify that the system avoids deadlock. Our research
also focuses on accessible specification languages such as
some form of natural language. We are currently running
experiments with a real system to demonstrate the ideas
shown in this paper.

REFERENCES

[1] I. Paromtchik, P. Garnier, and C. Laugier, “Autonomous maneuvers of
a nonholonomic vehicle,” in International Symposium on Experimental
Robotics, Barcelona , Spain, 1997.

[2] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential
composition of dynamically dexterous robot behaviors,” International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[3] D. C. Conner, H. Choset, and A. A. Rizzi, “Integrated planning and
control for convex-bodied nonholonomic systems using local feedback
control policies,” in Proceedings of Robotics:Science and Systems II,
Philadelphia, PA, 2006.

[4] A. A. Rizzi, “Hybrid control as a method for robot motion program-
ming,” in IEEE International Conference on Robotics and Automation,
vol. 1, May 1998, pp. 832 – 837.

[5] D. C. Conner, A. A. Rizzi, and H. Choset, “Composition of local po-
tential functions for global robot control and navigation,” in IEEE/RSJ
Int’l. Conf. on Intelligent Robots and Systems, Las Vegas, NV, October
2003, pp. 3546 – 3551.

[6] L. Yang and S. M. Lavalle, “The sampling-based neighborhood graph:
An approach to computing and executing feedback motion strategies,”
IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp.
419–432, June 2004.

[7] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Transactions
on Robotics, vol. 21, no. 5, pp. 864–874, October 2005.

[8] S. R. Lindemann, I. I. Hussein, and S. M. LaValle, “Realtime feedback
control for nonholonomic mobile robots with obstacles,” in IEEE
Conference on Decision and Control, San Diego, CA, 2006.

[9] E. A. Emerson, “Temporal and modal logic,” in Handbook of the-
oretical computer science (vol. B): formal models and semantics.
Cambridge, MA, USA: MIT Press, 1990, pp. 995–1072.

[10] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in IEEE International Conference
on Robotics and Automation, 2005, pp. 2020–2025.

[11] G. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: A temporal logic approach,” in IEEE Conference
on Decision and Control, Seville, Spain, 2005.

[12] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from LTL specifications,” in 9th International Work-
shop on Hybrid Systems: Computation and Control, Santa Barbara,
California, 2006.

[13] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, , and P. Traverso, “MBP
: A model based planner,” in In Proc. IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s waldo?
sensor-based temporal logic motion planning,” in IEEE International
Conference on Robotics and Automation, 2007, pp. 3116–3121.

[15] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1)
Designs,” in VMCAI, Charleston, SC, Jenuary 2006, pp. 364–380.

[16] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino, “Path tracking
control for Dubin’s car,” in IEEE International Conference on Robotics
and Automation, Minneapolis, MN, 1996, pp. 3123–3128.

[17] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM Press,
1989, pp. 179–190.

[18] A. Pnueli and E. Shahar, “The TLV system and its applications,”
1996. [Online]. Available: http://www.cs.nyu.edu/acsys/tlv/

577

