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Abstract—This research is focused on developing trajectory
planning tools for the automotive painting industry. The geometric
complexity of automotive surfaces and the complexity of the spray
patterns produced by modern paint atomizers combine to make
this a challenging and interesting problem. This paper documents
our efforts to develop computationally tractable analytic deposi-
tion models for electrostatic rotating bell (ESRB) atomizers, which
have recently become widely used in the automotive painting
industry. The models presented in this paper account for both the
effects of surface curvature as well as the deposition pattern of
ESRB atomizers in a computationally tractable form, enabling the
development of automated trajectory generation tools. We present
experimental results used to develop and validate the models,
and verify the interaction between the deposition pattern, the
atomizer trajectory, and the surface curvature. Limitations of the
deposition model with respect to predictions of paint deposition
on highly curved surfaces are discussed.

Note to Practitioners—The empirical paint deposition models de-
veloped herein, which are fit to experimental data, offer a signifi-
cant improvement over models that are typically used in industrial
robot simulations. The improved simulation results come without
the computational cost and complexity of finite element methods.
The models could be incorporated, as is, into existing industrial
simulation tools, provided the users are cognizant of the model
limitations with respect to highly curved surfaces. Although the
models are based on readily available information, incorporating
the models into existing robot simulation software would likely re-
quire support from the software vendor.

Index Terms—Automotive painting, trajectory planning, cov-
erage.

I. INTRODUCTION

AUTOMATION is widely used for automotive paint appli-
cation because of the repeatability of the resulting surface

finish, as well as the benefit of removing humans from a haz-
ardous environment. The automation of paint application be-
came necessary with the advent of high speed rotating bell at-
omizers and electrostatic charging, both of which significantly
increase transfer efficiency—the ratio of paint deposited on the
target surface to the total paint used.
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Increasingly, these atomizers are positioned by robot manip-
ulators instead of fixed automation, as robot manipulators af-
ford a greater level of system flexibility, allowing facilities to
rapidly adapt to changes in automobile designs. While the task
of applying paint has become almost completely automated,
generating trajectories for the robots is largely a human en-
deavor based on the experience of skilled technicians. Auto-
matic generation of trajectories can reduce the time required to
deploy a paint system for a new vehicle, thus reducing the con-
cept-to-customer time-line, and allows for a thorough evalua-
tion of the trajectories against a set of performance criteria—in-
cluding paint uniformity, paint waste, cycle time, etc. Unfortu-
nately, the relatively complex deposition patterns produced by
electrostatic rotating bell (ESRB) atomizers have made previous
work in trajectory planning for deposition tasks inadequate.

The deposition model we present has two primary purposes:
1) to capture the structure of the deposition pattern for use in a
planning system and 2) to support simulations used to evaluate
potential planning methods. These two purposes lead to contra-
dictory criteria for evaluating the models. First, the model must
be accurate enough to capture the structure of the deposition and
accurately predict the deposition on a variety of surface shapes
used to validate planning methods. Existing deposition models
designed for use in trajectory planning are too simple to capture
the relevant effects. Second, the model must be computationally
tractable from the perspective of the simulation and planning
tools, since the model will be used within a planning system.

We have developed a family of deposition models that
capture the significant features of the paint deposition process,
while retaining an analytic representation. While the model is
not intended to capture the full effects of the electrostatic field
on curved surfaces, the model has proved useful in developing
planning methods because it captures important features of the
effect of surface curvature. Note that our planning methods,
discussed in [1], [2], have been specifically developed to be
independent of the deposition model.

Section II covers relevant prior work in paint deposition
modeling. In Section III, we develop analytic paint deposition
models. Although general, the models are specifically designed
to capture the structure of the deposition pattern generated
by high speed rotating bell atomizers widely used for auto-
motive painting. We develop an analytic relation between the
structure of the deposition pattern and the variability of the
paint thickness on extruded surfaces. In Section IV, we discuss
experimental tests and methods used to determine values for
the parameters of the analytic deposition model. Further results
of experiments, which were designed to validate the param-
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eterized deposition model developed in Section III, are also
presented. Finally, in Section V, we draw conclusions from the
results and discuss the future direction of our work.

II. PRIOR WORK

The work presented in this paper is an outgrowth of our prior
work in the area of coverage planning; we developed plans for
guaranteeing complete coverage of previously unexplored and
unknown planar regions [3], [4]. We later extended these ideas
to reliably cover surfaces embedded in [5]. While these prior
efforts provided techniques for ensuring complete coverage of
a surface, they did not address the problem of minimizing vari-
ation in coating thickness, which we term the uniform coverage
problem.

Typical industrial robot planning/programming systems, such
as RobCAD™ Paint,1 rely on the user to specify the paint dis-
tribution pattern in the form of a paint thickness profile curve.
Since these tools do not consider the curvature of the surface
being painted, the utility of these tools for reliable paint deposi-
tion simulation remains limited.

Most academic research into automated trajectory planning
for painting robots assumed simple deposition models. The “au-
tomatic trajectory planning system” (ATPS) assumed uniform
paint distribution in a circular pattern [6]. The “teachless” spray
painting system, developed by Asakawa and Takeuchi [7], re-
quired a user specified set of parameters such as the elliptical
diameters of the paint pattern and the desired distance between
consecutive passes, which is known as the index distance. Sheng
et al. [8] used a simple parabolic thickness profile with a cir-
cular deposition pattern. Freund et al. [9] proposed a simple bi-
variate Gaussian model for the paint deposition, and focused on
calculation of the optimum index distance over planar sheets.
Ramabhadran and Antonio [10] considered bivariate Cauchy or
Gaussian distributions for the paint deposition applied to a flat
panel.

Other simple models include Arikan and Balkan’s [11] paint
deposition simulation model, which used a beta distribution.
They considered the effect of the distribution pattern on the op-
timal index distance, along with a preliminary attempt at con-
sidering surface effects on the deposition. Hertling et al. [12],
[13] focused on the development of deposition models, which
match a series of basis functions to experimental data assuming
an overall elliptical pattern. They reported that the observed de-
position patterns were not uniform, and did not exhibit a para-
bolic profile as reported by other researchers.

The highly simplified deposition models used in the vast
majority of prior research into paint deposition planning were
developed specifically for aerosol spray atomizers [12]. Auto-
motive coating processes are moving increasingly toward the
use of ESRB atomizers in order to increase transfer efficiencies
[14]–[16]. In an ESRB atomizer, paint fluid is forced onto the
inner surface of a high speed rotating bell, which is maintained
at a voltage of 50–90 kV relative to the grounded surface being
painted. Fig. 1 shows a schematic of a typical atomizer configu-
ration. The paint flow breaks up at the edge of the bell, forming
a cloud of droplets, as it is expelled radially due to centrifugal

1RobCAD is a trademark of Tecnomatix Technologies Ltd.

Fig. 1. ESRB atomizer with paint particle trajectory and shaping air flow lines
shown.

force imparted to the paint by the rotating bell. Each resulting
paint droplet is charged due to the charge on the bell. If the
particle charge is above the Rayleigh limit, the droplet breaks
apart under the resulting electrostatic forces, further atomizing
the paint spray. Typical diameters for the paint droplets are in
the range of 10–30 m [14], [15]. High velocity shaping air,
and often a charged pattern control ring, are used to direct the
charged particles toward the target surface.

The combined aerodynamic and electrostatic effects on the
paint spray and the resulting distribution of droplets on the target
surface are complex. Limited modeling studies have been per-
formed, and are generally based on finite element computational
techniques [14]–[16]. The computational nature of these simu-
lation approaches makes them unsuitable for direct use in a plan-
ning system, and have led us to investigate the use of empirically
validated analytic models to capture the dominant structure of
the deposition process.

III. DEPOSITION MODELING

The pattern of paint deposition, or film build, generated by
ESRB atomizers is a function of the specific atomizer, process
parameters, shape of the surface, and relative orientation of the
atomizer to the surface. When the atomizer is stationary, we term
the measured paint thickness over a surface as the two-dimen-
sional (2-D) deposition pattern. As the atomizer passes over
a surface, the majority of the paint emitted by the atomizer is
deposited on the surface, although some paint is invariably en-
trained in the shaping air and lost. The total paint thickness at
a given point on the surface depends on the rate of paint depo-
sition, the path followed by the atomizer over the surface, and
the speed at which the path is traversed [10]–[12]. We refer to
the resulting cross section of paint thickness orthogonal to the
direction of travel of the atomizer as the one-dimensional (1-D)
collapse. Ideally, the 1-D collapse is equivalent to integration
of the 2-D deposition model along the direction of travel. Fig. 2
shows the relationship between these structures for a planar sur-
face.

A. 2-D Deposition Model

We have developed a 2-D deposition model that represents the
rate of paint deposition or deposition flux in units of thickness
per second at a given point on an arbitrary surface, given a spe-
cific path location and orientation of the atomizer. We denote our
model by , where
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Fig. 2. Painting a flat panel shows the relationship between the 2-D deposition
pattern and the integrated thickness profile (1–D collapse).

Fig. 3. Atomizer path location uniquely determines both the emission point
and deposition model plane. As drawn, the signed value of 
 is negative since
the emission point is behind the atomizer path location p.

2, represents a point and the associated sur-
face normal on the surface being painted, and rep-
resents a path location and orientation given by the tool center
point frame (TCPF) specified by the planner and used by the
robot control program. We refer to as the 2D depo-
sition model, or simply the deposition model.

Since parameterizing the deposition model for arbitrary sur-
faces is difficult at best, we choose to develop an analytic model
by factoring the problem into three independent components.
We begin by parameterizing the 2-D deposition pattern to give
deposition flux on a planar surface. We refer to the analytic
model for the planar surface as the planar deposition model. The
planar surface is referred to as the deposition model plane, and is
shown in Fig. 3. Next, through recourse to differential geometry,
the planar deposition pattern is mapped onto an arbitrary surface
in a manner that preserves the total paint volume. Finally, there
is anecdotal evidence that the deposition rate also depends on
atomizer velocity [17]. Thus, the total deposition flux model for
a point on an arbitrary surface is a function of three sub-models:
deposition on a plane, projection to the surface, and scaling by
speed. Specifically, the total model is given by

where is the deposition at a point on the depo-
sition model plane determined by

is the area magnification factor
of the projection, and is the speed scaling.
We now detail each part.

1) Planar Deposition Model: We denote the planar deposi-
tion model as , where , and

2S is the unit sphere, which is used to encode the surface normal of a 2-D
surface embedded in IR �SE(3) is the Special Euclidean Group, which is used
to encode position and orientation of rigid bodies in IR . The corresponding Lie
algebra, se(3), is the tangent space at the identity of SE(3).

is a point on the deposition model plane determined
by the projection model described in the next section. As shown
in Fig. 3, the deposition model plane is oriented normal to the
atomizer and intersects the atomizer normal at a signed dis-
tance along , relative to the atomizer TCPF. We assume
that the paint is emitted from a theoretical emission point lo-
cated at a signed distance along the atomizer normal relative
to the TCPF. The distance from the emission point to the de-
position model plane is given by . Given ,
and , the paint emission point and deposition model plane
are uniquely specified. The orientation of the deposition model
plane about the -axis of the atomizer is determined by the
orientation of the atomizer assembly, and is independent of the
direction of travel.

We choose to use a set of Gaussians as the basis for the planar
deposition model because of the well-behaved analytic formula,
widespread use in modeling natural phenomena, and expressive
parameters. Experiments show a good match between Gaussian
behavior and the actual deposition pattern on a planar surface;
and hence, the planar paint deposition model uses two Gaus-
sians: an offset 1-D Gaussian revolved about the axis and a 2-D
Gaussian centered at the origin of the deposition model plane.
The revolved Gaussian term allows the model to capture a ring
of heavier deposition observed in experiments.

Although the rotating bell is axially symmetric, the shaping
air nozzles and pattern control ring are often not quite sym-
metric, and give rise to asymmetries found in actual deposition
patterns [17]. An angle dependent scaling function is applied
to the revolved Gaussian to generate these asymmetries in the
model. Our model includes two types of asymmetry terms to
capture these effects: a hemispheric weighting and a localized
weighting.

The resulting planar deposition model, similar to the asym-
metric volcano shown in Fig. 2, is given by

where , which has units of thickness per second,
scales the distribution to yield paint flux at a given point, and

weights the revolved Gaussian against the centered
Gaussian. To account for asymmetry in the deposition pattern,
the revolved offset Gaussian, , is scaled by the
function . We define to be

where weights the hemispheric
asymmetry scaling function oriented by the reference angle ,
and weights the asymmetry term localized by
reference angle with standard deviation . Note, the values
of the parameters ( , and ) are restricted such that

.
The revolved offset Gaussian, , is symmetric so

where . We define to be

(1)
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(a) (b) (c)

Fig. 4. These figures show the impact of the asymmetry terms K and K on the deposition pattern. For reference, K = 3:45 (m/s), K = 0:25; r = 250

mm, � = 120 mm, � = 200 mm, � = 0; � = 0, and � = 0:25. (a) Symmetric pattern K = K = 0. (b) Hemispheric asymmetry K = 0:5;K = 0.
(c) Localized asymmetry K = 0;K = 0:5.

where is the offset radius and is the standard deviation of
the Gaussian. The scaling factor, , normalizes the deposition
such that integral of equals one, that is

The centered Gaussian , is also symmetric and
normalized, and is given by

where is the standard deviation of the centered Gaussian. As
the overall shape of the deposition pattern of an ESRB atomizer
is approximately circular when the bell is oriented normal to a
flat panel and the atomizer is stationary, our model uses a sym-
metric 2-D Gaussian.

Fig. 4 depicts some instances of this new deposition model.
The images show the impact of changing the asymmetry terms
in the model. Both asymmetry features can be rotated indepen-
dently with respect to the deposition model plane.

2) Surface Projection Model: The planar model defined
above predicts deposition on flat panels, with the atomizer
oriented normal to the surface and located a fixed offset dis-
tance from the deposition surface. The next step is to predict
paint deposition on arbitrarily shaped and oriented surfaces.
We accomplish this using a direct geometric projection that
preserves total paint volume, ignoring electrostatic and fluid
dynamic effects of the paint spray [11], [12], [18]. We chose
this projection model because typical car painting applications
keep the bell atomizer at an approximately constant offset
distance, and approximately normal orientation relative to the
surface being painted.

The projection model, shown in Fig. 5 is developed by as-
suming that all of the paint emits from a point source called the
emission point, , which is constrained to lie along the bell-to-
surface vector, . Note that this emission point is a theoretical
emission point, not necessarily coincident with the actual center
point of the bell atomizer. The planar deposition model is em-
bedded orthogonal to the vector at a distance from the emis-
sion point, with its - axes aligned with the - axes of the
atomizer reference frame.

We define a set of parameterized curves, called projection
curves. These curves model the set of paths a paint particle
might take as it leaves the emission point. We derive a corre-
spondence function that maps a point, , on the target surface to

Fig. 5. Projection of deposition model onto an arbitrary surface. Note, the
scaling effect of the patch projected from the deposition model plane to the
surface approximation. Although the vectors are in reality three-dimensional,
this simple figure conveys the basic results. (Note: The path location p is not
shown).

a point, , on the embedded deposition model plane. The point
is defined by the intersection of a projection curve, originating

at and passing through , with the deposition model plane. The
deposition flux impacting the surface point is equivalent to the
flux at scaled by an area magnification factor, which ensures
that the total paint volume is preserved.

For the projection curves, we define a family of polynomial
curves, parameterized by , such that

(2)

where determines the direction of the curve in the - plane,
scales the rate of increase of the -coordinate, and de-

termines the “curvature” of the curve. With a value of
, these curves are straight lines emanating from the emission

point, . As , the curves bend sharply and asymptot-
ically approach a line parallel to the atomizer normal, . The
value of will be determined from data and then fixed; the
values of and are used to select a particular curve from a
family of curves. The family of curves is well defined for any
point on the deposition model plane, except for .
In this special case, we allow the projection curve to be a straight
line along the atomizer normal.

To derive the correspondence function, assume that we are
given a target surface point with

, and denote the corresponding deposition plane point
with . Both points are specified in the atom-

izer coordinate system.
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The parameters of the projection curve passing through an
arbitrary point are

(3)

(4)

Note, for a single curve passing through the given points and
, the curve parameters are the same. This allows us to derive

the correspondence function mapping target
surface points to deposition plane points; that is

To determine the area magnification factor, which measures
the differential distortion between two surfaces, at a particular
surface point , we first locally parameterize
the surface at the point using the first-order approximation

. We define and to be orthogonal unit vectors
that span the surface tangent plane at , such that the inward
pointing surface normal is . Thus, in the neighbor-
hood of the surface is approximated by

where and are parameters of the local mapping.
Next, we use the correspondence function to map this local

neighborhood of the target surface onto the deposition plane.
The combined mapping is

where denotes the th component of .
The first fundamental form of this combined mapping gives

the relationship between areas in the space and areas on the
deposition plane [19]. Evaluating the first fundamental form at

gives the area magnification factor

A more explicit derivation of the area magnification factor for a
linear projection is given in [20].

Substituting the surface normal definition and simplifying,
we obtain

if

otherwise.
The area magnification goes to zero as the projection curve

becomes tangent to the surface. If the dot product above is neg-
ative, it indicates that the projection curve is intersecting the
target surface from the incorrect side and thus the surface should
not receive any paint deposition.

Fig. 6. Painting a flat panel with three passes.

3) Speed Flux Scaling: The final component of our paint de-
position model on an arbitrary surface is a scaling due to the
speed of the TCPF. Our early experiments indicated that paint
deposition flux may vary with speed. Ford personnel speculate
that some paint droplets may actually bounce off of dry surfaces
[17]. As the droplets bounce less on wet surfaces, this causes an
increase in transfer efficiency as paint builds up on the surface.
Thus, we theorize that faster atomizer motion allows less time
for paint to build up, thereby decreasing the relative transfer ef-
ficiency.

Our composite model includes a simple model for scaling the
flux due to changes in atomizer speed of the form

where is a parameter to be fit to the data, is the trans-
lational speed of the atomizer TCPF, and is the nominal
translation speed of the TCPF.

B. 1D Collapse Model

In order to control the amount of variation in the coating
thickness, a trajectory planner must know the relationship be-
tween the deposition pattern of the atomizer, the trajectory fol-
lowed, and the resulting deposition on the surface being painted.
Typically, the deposition pattern is narrower than the width of
the surface being painted, requiring multiple passes to com-
pletely cover the surface as shown in Fig. 6.

As the bell moves relative to the surface, as shown in Fig. 2,
the 2-D deposition pattern moves over the surface and paint is
accumulated at each point on the surface. We use the 1-D col-
lapse to allow us to analytically consider the thickness variation
effects of varying the index distance (distance between adjacent
passes).

The 1-D collapse models the accumulated film thickness pro-
file as a function of the distance perpendicular to the direction
of travel, assuming that the deposition pattern does not vary
with time or position along the surface. This restricts our def-
inition of the 1-D collapse to planes, extruded surfaces, or half
cylinders. For general extruded surfaces, the trajectories are de-
fined along the axis of extrusion; for the special case of half
cylinders, the trajectories are defined along the cylinder axis or
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Fig. 7. Asymmetric 1-D collapse model with component Gaussians shown.

geodesics around the cylinder [20]. Unfortunately, the structure
of the analytic 2-D deposition model renders the calculation of
a closed form integral expression for the total deposition in-
tractable. Therefore, we directly define a 1-D collapse model
as

(5)

where is measured in the surface, orthogonal to the direc-
tion of travel. The three exponential terms that constitute this
model are each normalized Gaussians, with representing the
center locations and the standard deviations. The first two
Gaussians are offset from the centerline, such that and

, to capture asymmetries in the deposition pattern; the
third Gaussian is centered with . The gains are used
to specify the paint flux for each Gaussian. Fig. 7 shows the
component Gaussians and the associated composite film build
for a particular set of parameter values for (5). Note this model
assumes a particular atomizer speed and orientation. It will, in
general, have different parameter values for different speeds and
orientations due to the asymmetry and speed dependence of the
2-D deposition pattern.

To develop an understanding of how the deposition pattern
and index distance interact to determine thickness variation, we
ignore boundary effects and limit our discussion to an infinite
planar surface painted by an infinite number of passes, with
the atomizer at a consistent orientation relative to the plane and
moving at a constant speed. The total thickness at is given by

(6)

where is the index distance, and is the 1-D collapse
model for the given speed and orientation relative to the direc-
tion of travel. Looking at the thickness measurements as we vary

, the measurement pattern repeats itself with a period equal to
the index distance. The normalized deviation over one index is
given by

(7)

Fig. 8. Normalized deviation versus index distance for a typical 1-D collapse.

where is the average thickness over the interval. We use nu-
merical integration to evaluate (7) due to the complexity of the
equations in the numerator.

A typical deviation versus index distance curve for a partic-
ular set of 1-D collapse parameter values is shown in Fig. 8.
As expected, large indexes yield high deviation. If the model
was only a single center Gaussian, the deviation versus index
distance curve would be a monotonically increasing function.
However, in cases where there are significant offset Gaussian
terms, there is a local minimum in deviation versus index dis-
tance curve. The existence of this “sweet spot” may allow the
use of larger index distances to generate paint coverage with
acceptable variation, while reducing total cycle time. The de-
viation tends to be sensitive to changes in index distance at
the sweet spot, so for tight tolerances, keeping index distances
smaller than the sweet spot local minimum may be advisable.

Using both the 2-D deposition model and 1-D collapse model
allows us to perform parametric studies of the variation in paint
thickness. The 2-D deposition model is used to predict paint
deposition on a surface as a function of speed, orientation, and
various parameters. The 1-D collapse model, whose parameters
can be fit to the deposition profile predicted by the 2-D model
or determined experimentally, allows the direct computation of
the resulting variation. This allows us to analyze the effects of
changes to any of the 2-D deposition model’s variables.

IV. DEPOSITION MODEL FITTING AND VALIDATION

In order to determine the proper model parameters and val-
idate our models, we conducted a series of experiments at the
ABB Process Automation facility in Auburn Hills, Michigan.
The experiments used an ABB S3 robot outfitted with an ABB
50 mm Micro-Micro Bell atomizer to apply a solvent based au-
tomotive paint to phosphate coated test panels and primed au-
tomotive surfaces. The operating conditions of the application
process were 80–90-kV electrostatic voltage, 300-cc/min paint
flow, 300-nl/min shaping air flow, and a bell speed of 30000
RPM. The nominal speed of the atomizer was 200 mm/s, al-
though the speed was varied in some of the experiments, as spec-
ified below.

The total film thickness profile of the oven cured test panels
was measured with an Elcometer 355 coating thickness mea-
suring device. Five measurements were taken for each data
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point, with the low and high discarded and the average of the
remaining three recorded. To obtain data for the paint film
build on the primed or phosphate coated metal, the average
primer/phosphate thickness was subtracted from the average
total film thickness data to give the paint thickness value.

In this section, we describe the experiments used to fit
and validate each of the 2-D deposition model compo-
nents—planar deposition model, projection model, and speed
scaling model—and then describe a series of experiments on an
actual automotive surface using the fit model. The 1-D collapse
model can be fit to the same data; however, this section will
only present the results for the 2-D model, which is used for
predicting paint deposition given a surface and a specified
trajectory.

A. Planar Deposition Model

The planar deposition model has ten total parameters
. The first five of these

parameters are “symmetric” parameters with respect to an
emission axis as described in Section III. The second five
parameters are “asymmetric” parameters used to model asym-
metries in the deposition pattern.

An obvious method of fitting these parameters to the data
would use a deposition pattern generated by a stationary atom-
izer. Unfortunately, these patterns tend to be unreliable because
of the differing thickness values across the deposition pattern.
The thickness ranges from disconnected droplets of paint spatter
on the border, to thick rings of paint deposition. Early tests found
that aggregate results, obtained by using thickness profiles of
deposition from constant velocity trajectories, resulted in more
reliable data. As the edges of the deposition pattern tend to have
less paint, we chose to use multiple parallel passes to build up a
consistent thickness for measuring the deposition.

Our experiments use three passes over a flat panel, as shown
in Fig. 6, to determine the values of these parameters. In each
experiment, the flat panels were mounted on a vertical surface
during paint application. The paint atomizer applied paint in
three passes spaced at a constant index distance. The atomizer
was located at an offset of 254 mm from the panels and ori-
ented with its emission axis normal to the surface. As the TCPFs
are located on the surface, the physical arrangement parameters
are and mm. The atomizer moved on the
three-pass path at a constant nominal speed of 200 mm/s. To
guarantee a reliable paint thickness for measurement, each pass
was covered twice by the paint atomizer. This double coverage
has the effect of averaging the deposition pattern. The paint de-
position thickness profile was measured orthogonal to the travel
direction, as shown in the Fig. 2.

A total of seven tests were conducted. To capture the asymme-
tries, two experiments with the same index distance were con-
ducted for 475, 525, and 575-mm index distances. The first ex-
periment used vertical painting passes over a vertical surface,
while the second used horizontal passes over a vertical surface
with the same atomizer orientation as the first. A vertical test
with 300-mm spacing was also conducted.

For our model fitting, we chose to use the test with an index
distance of 525 mm. This distance allowed sufficient overlap to

Fig. 9. Resulting 2-D Model that was fit to experimental data.

Fig. 10. Data versus fit for 3-pass test with 525 mm index distance.

build up measurable thickness on the boundary, while retaining
a distinctive thickness profile. The fitting procedure used nu-
merical optimization tools, beginning with an initial guess for
the model parameter values. Given a particular set of parameter
values for the planar deposition model, the model’s prediction of
the data from a single three-pass test was produced in two steps.
First, the planar deposition model was numerically integrated in
the direction of travel to produce a 1-D thickness profile from the
2-D model. This thickness profile was then offset by the index
distance to simulate each pass. The resultant predictions were
summed to create the full thickness profile predicted for three
passes of the deposition pattern. This yielded the model’s pre-
diction of the measured data for a given travel direction. This
process was performed for both horizontal and vertical travel
directions.

The predicted thickness profile values, obtained by inte-
grating the simulated 2-D deposition pattern, were compared
to the observed data in a point-wise fashion for the horizontal
and vertical travel directions. Given the deposition data set and
a set of initial parameter values, the parameters were numeri-
cally optimized using the total sum of squared errors for both
travel directions as the cost function. Penalties for approaching
constraints, such as the radius and deviation parameters being
positive, were added to the cost.

The resulting parameters produced by this method are
m/s, mm, mm,

mm, rad,
rad, and rad. Fig. 9 shows the planar deposition
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Fig. 11. Data (x) versus prediction (—) for 3-pass planar model validation tests. Upper row = horizontal passes, lower row = vertical passes.

model surface for these parameters. Fig. 10 shows the compar-
ison between the model prediction and the experimental data
from the 525-mm index tests.

The planar deposition model was validated by comparing the
predicted paint thickness with experimental results from the re-
maining three-pass flat panel experiments at 300-, 475-, and
575-mm spacing. Using the 2-D deposition model fitted to the
525-mm index three-pass test data as described above, the depo-
sitions generated by the trajectories of the validation tests were
predicted. The resultant comparison between experiment and
prediction are shown in Fig. 11.

The model gives a good prediction of both average film build
and the structure of the variation for these flat panel tests. Most
importantly, the model captured both the asymmetries and the
structural variation dependence on index distance.

B. Surface Projection Model

The projection model has a single parameter, , which de-
termines the “curvature” of the projection curves. In order to
determine the value of this parameter, we performed two types
of tests: cylinder tests and oblique angle tests.

In the cylinder tests, a cylindrical surface of constant radius
was placed with its axis pointing vertically. A single pass of the
atomizer parallel to the axis of the cylinder was used to apply
paint. To guarantee a reliable paint thickness for measurement,
each pass was covered twice by the paint atomizer. The atomizer
was maintained at a constant offset of 254 mm and oriented
normal to the cylinder surface. Data were taken from a 1-D curve
wrapping around the cylinder orthogonal to the atomizer travel
direction. The cylinder tests were performed on four different
radii cylinders: 250, 500, 750, and 1000 mm.

In the oblique angle tests, a flat panel was mounted vertically
and painted with a single horizontal pass. Again, the single pass

was covered twice by the paint atomizer to generate an adequate
film build. The atomizer was located at a constant offset of 254
mm away from the flat panel and oriented with its emission axis
tilted with respect to the normal of the flat panel. The atomizer
was angled to point upward with respect to a horizontal plane,
so that there was a component of tilt only in the vertical direc-
tion. Data were taken from a 1-D profile orthogonal to the travel
direction. The oblique angle tests were performed at two orien-
tations; the atomizer was tilted 10 and 20 with respect to the
flat panel normal.

In order to predict deposition on each of these surfaces, the
planar 2-D deposition model, whose parameters were fit in Sec-
tion IV.A, was projected onto the surface using the surface pro-
jection model with the current value for the parameter. This
projected pattern was numerically integrated in the travel direc-
tion to produce the prediction of the 1-D profile, which was com-
pared to the experimental data to obtain the error. We chose to
use the 500 and 750 mm radius cylinders and the 20 oblique
tests for parameter estimation. The fitting procedure discarded
data points with thickness measurements less than 8 m, to
avoid measurement problems due to droplet spatter. The sum
of squared error between the remaining data points and model
prediction for all three tests was used as the cost function for
our optimization.

We used a standard numeric optimization technique to min-
imize this error as a function of . A collection of optimized
values was obtained by using initial values of , a linear
projection, and , and . A value of was
selected from the optimized collection.

The resultant prediction of paint deposition on each of the
training data sets is shown in Fig. 12. As shown, the model fits
the data for the cylinders, but does not do a good job capturing
the distortion due to the oblique tests. This is most likely due to
unmodeled electrostatic effects.



CONNER et al.: PAINT DEPOSITION MODELING FOR TRAJECTORY PLANNING 389

Fig. 12. Data versus fit for surface projection model training tests using
cylinders and a tilted plane.

Fig. 13. Data (x) versus prediction (—) for surface validation tests using
cylinders and a tilted plane.

The 250- and 1000-mm cylinder tests and 10 oblique angle
tests were chosen as the validation tests for the projection model.
The results of the model’s prediction of these data sets is shown
in Fig. 13. Here, the model fails to capture the distortion on
the small radius cylinder; again, most likely due to electrostatic
effects. In fact, the model under predicts the total deposition
significantly. It is theorized that, while our model predicts paint
loss due to over-spray, the electrostatic field acts to draw paint
back toward the surface. This boundary effect is not evident on
the flat panel tests because the panels are mounted to a larger
grounded flat metal surface.

The prediction for the 1000-mm radius cylinder appears to
be slightly shifted. This is most likely due to an error in the
setup of the test cylinder, which was manufactured from two
pieces of steel welded together. The deposition thickness pre-
diction for this larger radius cylinder is more accurate than that
of the smaller 250-mm radius cylinder. Likewise, the match for
the slightly oblique flat panel is more accurate than for the more
oblique 20 panel or the smaller radii cylinders. Again, these
effects can be explained by the lack of an explicit electrostatic
field calculation in our model. The electrostatic effects begin to
dominate as curvature of the surface or the relative angle be-
tween the atomizer axis and surface normal increases. In spite
of this deficiency, the model does appear to capture the basic
structure of the distortion.

C. Speed Scaling Model

To determine the value of the speed scaling parameter, , a
series of flat panel experiments were performed, where a single
pass of the atomizer was used to paint the panels. Once again,
the pass was covered twice to guarantee a reliable paint thick-
ness for measurement.

Fig. 14. Data versus prediction (—) for speed scaling training tests. (Top to
bottom, the curves are for 150, 250, 400 mm/s speeds respectively).

Fig. 15. Data versus prediction (—) for speed scaling validation tests. (Top to
bottom, the curves are for 100-, 200-, 300-mm/s speeds, respectively).

In each of these experiments, the flat panels were mounted
on a vertical surface during paint application. The atomizer was
located at an offset of 254 mm from the panels and oriented with
its emission axis normal to the surface. The panels were painted
at six different speeds 100, 150, 200, 250, 300, and 400 mm/s.
The tests were performed for both horizontal and vertical passes
of the atomizer. In total, twelve tests were performed. The data
taken from each test was a 1-D deposition profile orthogonal to
the travel direction.

The parameter fitting algorithm used data from the 100-, 200-,
and 300-mm/s horizontal passes and the 150-, 250-, and 400-
mm/s vertical passes. The resultant paint deposition obtained by
numerically integrating the 2-D paint deposition pattern, whose
parameters were determined in Section IV.A, was compared in
a point-wise fashion to the observed paint deposition data. Once
again, our fitting procedure discarded data points with thickness
measurements less than 8 m. The total error between the ob-
served deposition and predicted deposition was used to deter-
mine the cost. The parameter was selected by minimizing
the total error cost. The comparison between the model pre-
diction and the experimental data is shown in Fig. 14, where

.
The data from the remaining speed tests—that is, the 150-,

250-, and 400-mm/s horizontal passes and the 100-, 200-, and
300-mm/s vertical passes—were used to validate the parameter
fit. The results of these tests are shown in Fig. 15. As can been
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Fig. 16. A painted excursion door. The baseline data strips run both vertically
and horizontally.

Fig. 17. Predicted paint deposition on door. Paths are shown as solid dark lines
over the door.

seen in the graphs, the model does accurately capture the slight
dependency of deposition flux on speed.

D. Complete Deposition Model

To validate the performance of the full model consisting of
the planar deposition model, speed scaling and surface projec-
tion models, the Ford Excursion passenger side front door was
chosen as a target surface. Fig. 16 shows one of the doors used in
our experiments. The door has a line of concave curvature near
the middle, with a pronounced convex curvature on the bottom
third of the door.

A series of four paint deposition tests were conducted on
primer coated Ford Excursion doors. For each test, the door was
mounted to be approximately vertical. The atomizer emission
axis was maintained normal to the surface. In two of the tests,
the door was painted with horizontal atomizer passes, and the
other two tests were performed with vertical passes. The paths
on two of the doors are shown in Fig. 17.

These door tests were also intended to validate our early
trajectory planning methods, so both the speed along the pass
and index distance between the passes varied in some tests. A
summary of the salient characteristics of each test is shown in
Table I. In this paper, our focus is on how well the predicted
paint deposition matches the actual deposition, and not on the
relative performance of the different trajectories.

Before painting, vertical and horizontal 25.4-mm wide tape
strips were placed on the door to prevent paint application, and

TABLE I
SUMMARY OF DOOR EXPERIMENTAL SETUP

TABLE II
SUMMARY OF DOOR EXPERIMENT RESULTS

thus provide a location for measuring the primer thickness. The
spacing of the strips, shown in Fig. 16, was 184 mm for the hor-
izontal strips and 254 mm for the vertical strips. After painting,
the tape strips were removed and the paint oven cured. For each
door, a 5 row 5 column grid of data points covering the door
was taken. Within each unpainted strip, baseline primer mea-
surements were taken at 50.8-mm spacing. Baseline primer data
were important for the Ford Excursion door tests, since primer
thickness was known to vary significantly across the surface.
Paint deposition data were taken at a point offset from each base-
line data point; 25.4 mm to the left for vertical strips and 25.4
mm below for horizontal strips. The paint deposition at the data
point was calculated by the total film build measured at the data
point minus the film build at the baseline data point.

To predict paint deposition on the door, the robot trajectories
were simulated on a CAD model of the Ford Excursion door.
The actual robot path locations, which specify the robot trajec-
tories, were interpolated to give a fine resolution set of simula-
tion points, which approximate the robot trajectory. The simu-
lation points were approximately 8 mm apart. The simulation
time spent at each point was calculated based on the average
speed, also interpolated between actual path locations, and the
distance to neighboring simulation points. The contribution of
paint at a particular simulation point on the triangulated surface
from a given point was calculated as the deposition flux given
by the 2-D deposition model multiplied by the time spent at the
given point. The total paint deposition for a given point on the
triangulated surface was the sum of the predicted paint deposi-
tion at that point for all of the simulation points. A summary of
the results for all of the data points on each door is shown in
Table II. Fig. 18 shows selected thickness profiles for the first
test; the other tests have similar profiles.

Overall, although the model captured the basic structure of
the paint deposition, the model under-predicted the paint depo-
sition on these automotive surfaces. It is theorized that when
the surface curves away from the atomizer, as shown in Fig. 5,
the electrostatic effects become more prominent, which partially
invalidates the geometric projection model described in Sec-
tion III. This effect is especially prevalent near the edges of the
door. Our model predicts that paint droplets would be lost, when
the electrostatic effects could actually bend the trajectories back
to the edges of the door.
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Fig. 18. Data (x) versus prediction (—) for door test #1.

V. CONCLUSION

The results of our experimental study lead us to conclude that
our models capture the relevant structure of the planar deposi-
tion pattern, and the dependence of the thickness variation on
that structure. It is also apparent that the interaction of the paint
droplets emitted from the atomizer and the surface curvature has
a significant impact on the actual deposition pattern on curved
surfaces. These preliminary conclusions also indicate the need
for additional tests regarding the dependence of the deposition
pattern and transfer efficiency on the speed of the atomizer as it
moves relative to the surface.

The models we have developed accurately predict deposition
on planar surfaces, where the atomizer is oriented normal to the
surface. Although the experimental results from deposition on
the curved door surface point to shortcomings with the simple
geometric projection developed in Section III, the experiments
do confirm the interaction of surface curvature with the planar
deposition pattern.

Despite the shortcomings of our 2-D deposition model, the
models are useful for research. By using an analytic model,
we are able to develop our understanding of the interaction be-
tween the surface, the deposition pattern, and the atomizer path.
This enables our exploration of trajectory planning techniques
that influence overall quality measures such as thickness vari-
ation, cycle time, and efficiency. We will continue to use these
analytic models during the development phase of our planning
tools. Given that our planning tools rely only on the structure of
the deposition on the surface, and not on the underlying model,
the need for more computationally expensive models or experi-
mental data is delayed until the implementation stage.
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