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Abstract

This work eramines force modeling and software-
based commutation for closed-loop control of planar
linear motors, motivated by the need for a robust and
versatile planar robot for precision assembly. The ap-
proach taken is to make measurements of the static
and dynamic force capabilities of the motor as directly
as possible, and determine the applicability of simple
models commonly used. Measurements of force ripple,
linearity with current, force reduction with skew angle,
and eddy current damping forces are presented. The
high-frequency current changes required for high-speed
motion are shown to make the system sensitive to both
the latency and update rate of the commutator and to
limit the force generation capabilities at high velocities.
Although this effect is caused by multiple sources, it is
shown that it is well modeled as a scalar with units of
time.

1 Introduction

In the Microdynamic Systems Laboratory! at
Carnegie Mellon University, we are interested in the
use of planar linear motors as components in a mod-
ular minifactory assembly system [1]. Planar linear
motors fit into such a system by providing both coarse
and fine motion capabilities in a device with a single
moving part. In the minifactory, multiple planar linear
motors fill the role of couriers carrying sub-assemblies
between processing units mounted on bridges above a
common tabletop workspace.

Planar linear motors consist of a moving forcer that
can translate in two directions on a passive steel platen
stator surface etched with a waffle-iron type pattern.
The forcers fly on a 15 pum air bearing pre-loaded by
permanent magnets, and require a tether to supply
air and power. These forcers and platens are avail-
able commercially both as separate components and
integrated into assembly workcells.

The particular forcer examined in this paper is
shown in Fig. 1. Two sets of two motors? mounted
orthogonally generate balanced forces about the cen-
ter of mass. Each of the four motors consists of a stack
of laminations and two coils, shown schematically in
Fig. 2. The motors operate on a flux-steering principle,
with the coil currents acting to switch the permanent
magnetic flux from one set of poles to the other. The

Lhttp://www.cs.cmu.edu/~msl
2Here, motor refers to one of the four actuators on the forcer,
and planar linear motor refers to the entire device.

Air bearing
orifice

Motor

== SRS TR

Figure 1: The underside of the Normag 4XY1302-2
planar linear motor, with 1.016 mm tooth pitch, 26 N
nominal static force, 1.8 Kg mass (including interfer-
ometer optics, not shown), and 2 A operating current.

poles with the most flux tend to align themselves with
the platen teeth, so that by activating the poles in
the proper order, a stepping motion is achieved. The
coil currents can also be microstepped by applying a
sine wave to one coil and a cosine wave to the other.
Refer to [2] or [3] for more detailed presentations of
open-loop planar linear motor operation.

Although these motors have found some success in
industry, their open-loop operation does not give the
robustness and versatility needed for use in a mini-
factory. For example, as commanded speeds are in-
creased, the motor will begin to lose synchrony and
stall. In addition, open-loop operation can not provide
sufficient rejection of disturbance torques during as-
sembly operations. Closed-loop control can solve these
problems, but has not yet been widely successful® be-
cause of the lack of a suitable position sensor.

Our group is actively developing sensors that will be
incorporated into the forcer for sensing platen teeth to
a resolution of 1 um. We are exploring both optical
and magnetic sensing schemes [4], and have fabricated
a compact 3-DOF magnetic sensor. Crawford and
other students of Youcef-Toumi [5] and Ish-Shalom [6]
have both independently fabricated and tested mag-
netic platen sensors.

The work presented in this paper makes use of a
2-DOF (translation and skew angle) high-speed laser

3The exception is the common use of accelerometers[3] to
damp vibrations at high speeds and at the end of motions.
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Figure 2: Basic linear motor operation: Current in the
motor coils generates magnetic flux (dark flux path)
that sums with the permanent magnet flux (light flux
path) to produce forces.
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interferometer as a position sensor. Whereas this sen-
sor has better bandwidth and precision than a platen
tooth sensor, the work presented in this paper is in-
dependent of the particular sensor used, provided it
meets the minimum bandwidth and resolution require-
ments. This work is also independent of the higher
level closed-loop control method used for controlling
the forcer.

2 Motor Commutation

In the context of planar linear motors, a commuta-
tor is simply a mechanism that selects motor currents
to achieve a desired force. The usefulness of a com-
mutator is in providing higher level controllers with
an ideal force source (within actuator limits), as op-
posed to a system where a current must be specified for
each coil. Commutators separated from higher level
controllers are especially important for planar linear
motors because currents must be commanded at KHz
rates. For example, to operate the planar linear motor
of Fig. 1 at 1 m/s, a sine wave of nearly 1 KHz must
be applied to the motor coils, calling for updates of at
least 2 KHz.

Typically, the forcers are assumed to generate forces
according to the relation:

Fyenn = kigsin(¢) + kip cos(¢), (1)

where Fg., is the total force generated by the z-axis
motor pair, k is a constant with units of force over
current, i, is the current in coil *, and ¢ is the phase
of the motor. The phase is defined as the position of
the motor relative to the nearest tooth pitch, expressed
as an angle:

¢ = 2mz/T, (2)

where 7 is the tooth pitch. This force expression as-
sumes no manufacturing errors, no magnetic satura-
tion, uniform teeth, perfect amplifiers, infinite update
rates, and no rotation of the forcer. An identical equa-
tion applies to the y-axis motor pair.

It is convenient to re-parameterize the input cur-
rents according to:

iqg = icos(y) and i = —isin(y), (3)
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Figure 3: Test setup for static force measurements.

where 7 and ¢ are the new parameters. Combining (1)
and (3) and simplifying yields:

Fyenn = kisin(¢ — o). (4)

For open-loop control, force is not usually con-
trolled, but rather the equilibrium position of the mo-
tor. Typically, i is kept constant at the maximum
value, and a value of ¥ = ¢ges 1s used to shift the
equilibrium position of the motor to ¢4es.

For closed-loop control, a fized amplitude commuta-
tor can be designed that also keeps ¢ at its maximum
value. However, 1 is now varied to generate forces
by setting it to 1/) = ¢ — arcsin(Fyes/ki). This com-
mutation scheme requires large currents to be in the
motor coils at all times, resulting in unwanted thermal
effects, but also a potentially useful passive stiffness.

Alternatively, the other input parameter, i, can
be fixed relative to the motor position ¢ so that the
motor is always operating at the peak of the stiffness
curve by setting ¥ = ¢ — 7/2. In this approach, force
is controlled by varying the amplitude ¢ according to
i = Fyes/k. This fizred phase commutator will have
reduced thermal effects, but no passive stiffness.

In the following sections, static and dynamics tests
are performed to determine whether the assumptions
made for (1) are valid.

3 Static Force Characterization

Static force measurements are performed using a
locked rotor test commonly used in motor modeling.
In this test, a constant set of currents is applied to the
motor coils. A load is applied to the motor through
a force gauge, and the force is recorded as the motor
deflects from its equilibrium position. The test setup
is shown in Fig. 3.

The locked rotor test is slightly more complicated
for planar linear motors because their air bearings al-
low for 3 DOFs. An external constraint or rotation
servo is required to keep the forcer from rotating. As
an external constraint would be difficult to align, the y
motors of the forcer are used to regulate the skew angle
to zero. A PID angle controller with a fized-amplitude
commutator is used for skew angle regulation and pas-
sive stiffness in the (unsensed) y direction.
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Figure 4: Force versus position (¢), measured data (x)
differ from a sine function (solid line) by a small error

(dashed line). Here, ¥y = 0° and i = 2A.

3.1 Experimental setup

The experimental setup, shown in Fig. 3, consists
of a Normag forcer on a Normag platen connected
through a double universal joint linkage to an Entran
load cell. The load cell is mounted on a 3-axis mi-
crometer stage, with the z translation controlled by
a Newport automated micrometer. The coupling be-
tween the forcer and load cell is designed to transmit
only axial forces, and to attach to the forcer as low as
possible, to minimize torques that may tend to deflect
the air bearing. As there is significant compliance in
this coupling, a Zygo two-axis high-speed interferome-
ter is used to monitor the true position and skew angle
of the forcer.

For these tests, the currents in the £ motors of the
forcer are set to fixed values using (3). After setting
these currents, there is a delay of 10 minutes to mini-
mize thermal expansions during data collection. Next,
the micrometer is commanded to move in short in-
crements over a range of two pitch units. After the
micrometer settles to each commanded position, the
load cell and interferometer are read and the values
stored. The force generated by the forcer as a func-
tion of position is shown in the stiffness curve of Fig.
4. This test is repeated with different values of param-
eters ¢ and ¢ in (3). The data collection procedure is
fully automated, allowing more data to be collected
than would otherwise be feasible.

3.2 Experimental results

A total of 127 tests were completed to generate stiff-
ness curves for ¥ from 0° to 180°, and for ¢ from-2.0 A
to 2.0 A. For each run, the micrometer was positioned
every 25 pm along a 2032 pm (2 pitch) distance. The
total data collection time was about 32 hours, taken
over several days.

Fig. 4 shows a typical stiffness curve. Note that
the sine function matches the data points? to within
1.5 N. Also note that, neglecting higher harmonics, it is
only the amplitude of the sine function which is useful,
because the phase and period of the sine function are
determined by the tooth pitch and the phase ¢. Thus,
only the peaks of the stiffness curves can be plotted for
multiple runs on one diagram, as in Fig. 5. This figure

4The points are not evenly spaced due to compliance in the
force linkage.
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Figure 5: Force ripple, showing the peak force capa-
blhty of the forcer as a function of input parameters
and 1.
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Figure 6: Force linearity, showing peak force as a func-
tion of ¢, with ¥)=0. Measured values (4), and Eq. (5)
fit to these data (solid line).

shows the variation of the peak force of the forcer as
the parameters ¢ and i vary.

This plot shows significant force ripple when the
motor is commutated with (3), exceeding 20% in
places. If smoother force generation is desired, these
data can be used to correct the motor forces. One
approach is to generate a lookup table that gives an
appropriate set of currents as a function of the phase
angle and desired force, as in [7]. However, this tech-
nique requires a complete set of force data to generate
the lookup table for each forcer. While three days of
data collection to get these data once is reasonable, it
seems excessive to do this for each forcer needed in a
minifactory.

Fortunately, we may be able to use a simpler tech-
nique. Plotting a vertical cross section of the data for
=0 produces Fig. 6. This curve should be close to
linear if (1) is valid. However, there is significant devi-
ation from linearity due to magnetic saturation. This
nonlinear function is well modeled by a simple function
such as®:

fc — aOic —a |Zc| ica (5)

where i. is the current applied to the motor coil, f.
is the peak force generated by the coil, and ag and a;

5Chai and Leenhouts[8] have used similar empirical functions
to model the saturation in rotary stepper motors.
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Figure 7: Peak force as a function of forcer skew angle,
with (=2 A and 41 2 = 0° (solid line) or 41 5 = 45°
(dashed line).

are positive parameters that must be determined for
each motor coil. The curve connecting the data points
in Fig. 6 is generated by computing the ao and aq
parameters based only on the slope of the data at zero
current and the magnitudes at maximum currents. In
contrast to a 3D lookup table, the data needed to fit
this curve can be taken in a manner of minutes using a
hand-held force gauge for a pull-out test to determine
the peak forces for only four values of ¢. Early results
indicate that the magnetic saturation effect accounts
for slightly more than half of the force ripple. The
remaining ripple is probably due to higher order terms
in the stiffness curves.

Force generated by the forcers is also dependent on
the skew angle. As the forcer rotates slightly, the long
motor teeth only partially overlap the platen teeth,
causing the peak force to decrease. At large rotations,
the forcers can not operate, but they can be used as
a fine-motion device with a motion range of a few de-
grees.

To allow control of the motor skew angle, it must
be included in Eq. (1). The misalignment of teeth will
cause a decrease in k with increasing angle magnitude,
and the phases ¥ of the two motors mounted on oppo-
site sides of the forcer will shift in opposite directions
as the angle changes. Thus, Eq. (1) and Eq. (2) are
replaced by:

Fyen = k(0)iq1sin(¢1) + k(0)ip1 cos(é1)
+k(0)iaz sin(¢2) + k(0)ip2 cos(¢2), (6)
1= ¢u + G, P2 = ¢x — o, (7)

where ¢, is given by (2). The effect of # on the phase
position of each motor is reflected in the term ¢4 =
0l - 27 /7, where, 0 is the forcer skew angle, and [ is
half the distance between each pair of motors. Note
that four current values per axis are needed to control
the forcer rotation, so that (3) is replaced by:

iq1 = icos(¥1 + @), ip1 = —isin(Y1 + ¢g),
Qg2 = icos(¢2 — dg), iy = —isin(Ya — ¢g).(8)

These equations will feed-forward the appropriate
phase to each motor based on the rotation angle. How-
ever, the function k(0) is still unknown. To examine
this function, the locked rotor test is repeated, using
the y motors to servo the forcer skew angle to non-
zero values. The data in Fig. 7 show a force dropoff
with increasing angle magnitude, as expected. Each
plot also shows an artifact from the uncompensated
force ripple, because as 6 changes, the arguments of
the transcendentals in (8) will change. Thus, the rip-
ple shown as ¢ varies in Fig. 5 also appears here.
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Figure 8: System latencies and control rates cause the
motor’s output force to drop at high velocities.

4 Dynamic measurements

The importance of dynamic effects was evident in
initial closed-loop control experiments using the fized
phase commutator described in Sec. 2. While our
open-loop controllers were able to drive motors to ve-
locities over 1 m/s, motors under closed-loop control
could not reach even half that speed. As discussed be-
low, the reason for this limitation is delays in the com-
mutator, which can be corrected by adding a phase
advance term to the forcer position.

Another significant dynamic effect is the eddy cur-
rent damping force caused by the large time-varying
magnetic fields generated as the motor passes over the
unlaminated steel platen surface. As these forces act in
opposition to the forcer velocity, they are often treated
as a mechanical damping effect [9]. As shown below,
these forces can be measured by examining the acceler-
ation responses resulting from bidirectional step force
commands.

4.1 Phase advance

The initial closed-loop controller does not perform
as well as the open-loop controller because the feed-
back loop contains delays, making the motor position
sensed at the beginning of the closed-loop cycle invalid
by the time the output is produced. Fig. 8 shows this
effect in more detail. The stiffness curve shown as-
sumes the motor is at the location read by the sensor.
The goal is to set the motor currents so that the motor
is operating at the peak of the stiffness curve, shown
as a star. However, while the sensor signal is being
processed and new outputs take effect, the motor will
have moved, causing the output to miss the peak of
the stiffness curve by an amount v - ¢, the velocity of
the motor times the latency. In addition, since the
updates occur at discrete times, the motor force over
the next output cycle will span a range of the stiffness
curve of length v/r, where v is the motor velocity and
r is the output update rate in Hz. So instead of get-
ting the commanded force (the star), we get a reduced
force that changes during the output interval (the bold
arrow). By using a phase advance term of vt; + 3 we
can shift the bold arrow so that it is centered about
the peak of the stiffness curve®. The approach is to
determine the latency time and commutation rate of

SNote that the average force will always be lower than the
peak for finite commutation rates, and that with fixed commu-
tation rates, this effect will cause the available force to decrease
with velocity.
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Figure 9: Average acceleration as a function of the
phase advance time. The computed value is indicated
by the vertical dashed line.

the commutator and compute a delay time (in units
of seconds). This value is multiplied by the latest ve-
locity to get a phase advance position offset, which is
added to the latest position. The sum is the expected
motor position when the output takes effect.

Commutator latencies include input and output de-
lays and computation times. For our system, the input
delay is negligible. The commutation code running on
a Motorola 68040 takes 200 us to compute output cur-
rents based on the input position.

The amplifiers introduce an output delay which is
slightly more complicated to measure. To do so, a
spectrum analyzer is used to measure the transfer func-
tion of the amplifier driving one motor of a stationary
forcer floating on the platen. Note that the amplifier
dynamics can be reasonably modeled by a constant
delay time as long as the lowest frequency poles and
zeros are above the driving frequencies of interest. If
this is not the case, the delay time will have to vary
with the commanded velocity. For our amplifier, the
lowest pole appears to be at 1400 Hz, yielding a con-
stant delay time of 114 us.

The last delay is from the commutation update rate,
3500 Hz for these tests, giving a total delay time of

b1
23500

This value is the delay time that is multiplied by the
motor velocity to compute the amount of phase ad-
vance.

4.2 Experimental verification

To validate the estimated phase advance delay time,
full scale force commands are sent to a fized phase
commutator controlling the z motors of the forcer for
a range of values for the phase advance delay time.
As with the static force measurements, a PID con-
troller with a fized amplitude commutator controlling
the y motors is used to prevent both skew angles and
y translations. Force commands are generated such
that the motor will accelerate forward and backwards
at maximum acceleration between velocities of -1 m/s

and 1 m/s several times”. The complete sequence typ-
ically takes less than 0.5 s, with motions of under 50
mm.

The interferometer position data for the two long
constant acceleration segments are differenced to get
velocity. Over repeated runs with varying phase ad-
vance delay times, the fastest response indicates the
best value for the delay time. To quantify the fastest
response, a velocity of 1.6 m/s is divided by the time

+ 114+ 200 = 457 ps.

7“While the forcer can move as fast as 2 m/s, the interferom-
eter has a limit of 1 m/s.
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Figure 10: Trajectory (solid line) tracking with
(dashed line) and without (dotted line) phase advance.

it takes for the forcer to change from +0.8 m/s to -0.8
m/s, to compute an average acceleration.

Fig. 9 shows this average acceleration as a function
of the phase advance time. Note that the peak force
matches the phase advance time computed in the pre-
vious section to within 50 us.

To demonstrate the improvement from the phase
advance term, Fig. 10 shows the position and velocity
trajectories for a peak acceleration command starting
from a rest position. Note that although adding phase
advance yields a substantial improvement, it is still
not as fast as the theoretical maximum because of de-
creased forces from finite control rates and eddy cur-
rent damping forces, discussed below.

It should be noted that phase advance is a common
technique used in the control of stepper motors. It
has even been previously applied to linear and planar
motors [5, 10]. However, these works do not give much
intuition on computing the phase advance functions.

4.3 Eddy current damping forces

To measure the eddy current damping force, first
note that this force is always opposite in sign to the
motor velocity. Thus, it increases the effective max-
imum actuator forces during decelerations, and de-
creases them during accelerations.

Using the proper value for the phase advance pa-
rameter, the bang-bang acceleration tests of the previ-
ous section are repeated. This time, the interferometer
position data are differenced twice to get an accelera-
tion signal, and filtered to reduce the noise from force
ripple and other sources. The motor acceleration as a
function of velocity for the two constant acceleration
segments of the motor trajectory can then be plotted.
The upper traces in Fig. 11 show ten repeated runs as
well as an average for the positive acceleration segment
of the trajectory. The lower traces show the same for
the negative acceleration segment of the trajectory.

The eddy current damping force as a function of
velocity is computed by averaging the upper and
lower curves. This computation gives the accelera-
tion change caused by the eddy currents, which can
be multiplied by the motor mass, 1.8 Kg, to get the
eddy current damping force. This result is shown in
the middle trace of Fig. 11.

Although these data are rather noisy, they appear
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Figure 11: Acceleration and eddy current forces versus
velocity. The upper and lower traces show acceleration
vs. velocity. The middle trace shows the damping
force. The dashed straight line is the damping force
linearized about zero velocity

to show that the eddy current damping forces are not
linear, but level off after a velocity of about 0.5 m/s.
Ongoing work includes the use of an accelerometer and
additional runs to produce a less noisy version of Fig.
11 that can be used to predict the eddy current forces
at high velocities. This information is necessary to
characterize the acceleration limits of the forcer for
use by trajectory planners.

Nordquist and Smith [11] use an alternate method
for computing the eddy current damping forces. They
assume the motor can be modeled over small displace-
ments from an equilibrium position as a linear spring-
mass-damper system. An impulse response test is used
to determine the damping ratio of the system based
on the motor mass and local stiffness. Applying this
method to the Normag forcer gives a damping coeffi-
cient, k,, of 37.2 N/m/s. The resulting linear damping
force curve from this damping coefficient is shown plot-
ted as a dashed line in Fig. 11, which seems to match
the slope of our eddy current force computation only
near zero velocity. However, this estimate supports the
conclusion of a non-linear eddy-current force, because
if this line is extended to higher velocities, it will cause
drastic drops in the available acceleration, which are
not observed here.

Gjeltema [2], using a Normag motor, found the eddy
current drag forces to be linear with velocity. How-
ever, only the acceleration characteristics of the motor
are examined. Without deceleration data, damping
forces (which decrease the maximum acceleration and
increase the maximum deceleration) can not be dis-
tinguished from amplifier dynamics and commutation
update rate effects (which decrease the maximum ac-
celeration and deceleration).

5 Conclusions

In summary, static and dynamic force measure-
ments of planar linear motors have been presented that
support the following conclusions:

e The stiffness curve of the motor is reasonably ap-
proximated by a sine function.

e The amplitude of this sine function is a non-linear
function of current.

o The available force of the forcer decreases with
skew angle, falling to 50% at about £1.0°.

e A phase advance term is necessary to overcome
commutator latency and update rate delay times,
and can be measured by determining the time be-
tween sensor reads and output updates.

e Eddy current damping forces are non-linear and
can be computed by averaging positive and nega-
tive acceleration curves at each velocity value.

This work provides the foundation for an integrated
forcer/sensor under development. This platform will
be used for evaluating a number of high-performance
control strategies needed for application areas includ-
ing precision assembly in a minifactory system.
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