
DISTRIBUTED COVERAGE OF

RECTILINEAR ENVIRONMENTS

Zack J. Butler

CMU-RI-TR-00-23

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the Robotics Institute

of

Carnegie Mellon University

c
 Zack J. Butler 2000

Carnegie Mellon University

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Abstract

This thesis addresses a speci�c problem of distributed robotics | namely, the problem of

using a team of identical robots to autonomously and cooperatively generate a map of their

shared workspace without the use of a central controller. The problem is posed as one

of sensor-based coverage, in which a complete exploration of the environment is produced

without any initial information. The system that inspired this work, the minifactory, is an

automated assembly system that requires the ability for complete self-calibration, a task that

can be posed as sensor-based coverage. The problem addressed here is therefore speci�ed

for a class of robots similar to the minifactory's couriers | rectangular robots with intrinsic

contact sensing operating in a shared rectilinear environment.

To approach this problem, �rst a novel sensor-based coverage algorithm for a single

robot, CCR, is presented. CCR uses a reactive construction and no time-based history

to perform coverage, enabling the straightforward addition of cooperation. A proof is then

presented which shows that a robot under the direction of CCR will reach every point in any

�nite rectilinear environment with no initial knowledge. A cooperative algorithm DCR is

then presented which runs independently on each robot in a team with a shared workspace.

DCR uses a modi�ed version of CCR to produce coverage, while two additional algorithmic

components allow the robots to cooperate at run-time to determine their relative location

in the environment and improve the eÆciency of the coverage process. A proof for DCR is

also presented which shows that each point in the environment will be reached by at least

one robot, and that each robot will end up with a complete map to which it has registered

itself. Extensions to DCR are presented which allow for the handling of collisions between

robots, some position uncertainty in the robots' sensing, and teams of di�erent sized robots.

Finally, some directions for future work are presented, including the extension of CCR and

DCR to di�erent robot systems and the generalization of the proof of DCR to a class of

cooperative robotic algorithms.

i

Acknowledgements

It's been a great few years here at Carnegie Mellon, and I'm happy to have this opportunity

to thank some of the people who have helped make it so.

First of all, I'd like to thank my thesis committee for reading this document and being

there to ask all the right questions. I'd like to especially thank my advisor, Ralph Hollis,

who had a great idea about the future of manufacturing and put together a great lab (and

populated it with great robots). And in my case, he let me run with one little piece of his

idea and explore the world of algorithms while getting to play with robots too. Al Rizzi was

always there to answer my hard questions and ask some too, and was willing to sit down

and help build robots, even when it meant a few hours with a soldering iron and a crimping

tool. I also had many useful discussions with Howie Choset and Ercan Acar, who have also

been working on sensor-based coverage here at CMU.

A great lab is in large part a collection of good people, and I certainly enjoyed being

part of the Microdynamic Systems Lab. From a technical standpoint, Arthur Quaid wrote

the courier control code and assisted with experimental setups, and Jay Gowdy built all the

high-level AAA software that I used for initial simulations. Moreover, I greatly appreciated

all the talks with the other folks in the lab, both technical and otherwise. And being in

the Robotics Institute and getting to interact with a wide variety of smart people (and at

subsidized social events!) was a wonderful experience.

From a more personal standpoint, I'd like to thank my girlfriend, Christy Dryden, who

put up with various frustrations over the last three years, and who even told me to get back

to work when I needed to be told. And of course my parents, who supported me for all

those years, and who thought that grad school was a good idea.

The work presented here was also made possible by an NSF Graduate Research Fellow-

ship as well as NSF grants DMI-9523156 and DMI-9527190.

For another take on these thoughts, take a look at Appendix C.

ii

Contents

Abstract i

Acknowledgements ii

List of Tables v

List of Figures vi

1 Introduction 1

1.1 AAA/Minifactory . 3

1.2 Problem Statement . 6

1.3 Previous related work . 6

1.4 Document Summary . 12

2 Single-robot coverage 14

2.1 CCR description . 14

2.2 Correctness Proof . 28

2.3 Implementation . 38

3 Cooperative coverage 51

3.1 Cellular decompositions under DCR . 52

3.2 Components of DCR . 53

3.3 Correctness Proof . 65

3.4 Implementation . 77

4 Algorithm Extensions / Discussion 84

4.1 Collision handling . 84

4.2 Data propagation . 91

iii

4.3 Non-identical and rectangular robots . 92

4.4 Future extensions . 95

5 Conclusions 106

5.1 Contributions . 107

A Algorithmic details 110

A.1 CCR event handler . 110

A.2 CCR map interpreter . 112

A.3 CCRM updates . 114

B Courier sensors 117

B.1 Magnetic platen sensor . 117

B.2 Optical coordination sensor . 119

C Acknowledgements, revisited 121

Bibliography 125

iv

List of Tables

2.1 Performance of CCR in various square environments. 44

2.2 Performance of CCR in the environments of Fig. 2.18. 46

2.3 Performance of CCR on the courier in the environments of Fig. 2.19. 48

2.4 Elapsed time (in seconds) for CCR under various control methods. 50

3.1 E�ects of the overseer on the robot's current cell Cc. 75

3.2 Performance of DCR in the environment of Fig. 3.18. 81

3.3 Performance of DCR in the environment of Fig. 2.18a. 82

3.4 Performance of DCR in the environment of Fig. 2.18b. 83

v

List of Figures

1.1 Typical coverage paths for a given environment. 3

1.2 An example section of a minifactory. 4

1.3 The moving part (forcer) of a courier robot sitting on a platen. 5

1.4 A common approach to sensor-based coverage. 7

2.1 A schematic of the components of CCR. 15

2.2 Examples of (a) an oriented rectilinear decomposition and (b) a boustrophe-

don decomposition. 16

2.3 The data structures associated with a single cell Ci as represented in CCR;

cell Cj also shown for clarity. 17

2.4 The four segments of a seed-sowing path. 18

2.5 The ways that an interesting point can be discovered during seed-sowing. . . 19

2.6 An example of localizing an interesting point and continuing coverage. 20

2.7 A second example of localizing an interesting point and continuing coverage. . 21

2.8 The two ways an interesting point can be discovered during edge exploration. 21

2.9 A cell's maximum extent is limited by other cells' minimum extents. 25

2.10 A summary of the FSM representation of CCR. 30

2.11 The states of CCR during seed-sowing. 31

2.12 States of CCR during exploration of the initially discovered side of a cell. . . 32

2.13 The states involved in exploration of the second known side of a cell. 34

2.14 The possible geometries of placeholders being turned into cells. 37

2.15 An annotated screenshot of the simulation of CCR. 39

2.16 The states and transitions corresponding to state A1 (as shown in Fig. 2.11)

and motion � in the absence of hybrid force/position control. 42

2.17 Problems arising from small position errors. 43

2.18 Test environments for CCR. 45

vi

2.19 Environments used for CCR testing. 47

2.20 Two di�erent decompositions created in the environment of Fig. 2.19a 49

3.1 A schematic version of the concept behind DCR. 51

3.2 An example sweep-invariant decomposition and generalized rectilinear de-

composition. 52

3.3 A schematic representation of the components of DCR and the types of data

transferred between them. 54

3.4 The e�ects of an exploration boundary. 55

3.5 A typical example of the maintenance of intervals between vertically adjacent

cells. 56

3.6 Two potential transforms are calculated by the feature handler. 58

3.7 An example of adding new area by the overseer 61

3.8 A new cell narrower than an incomplete cell must be as tall. 63

3.9 Determining the cell(s) adjacent to an interval i. 64

3.10 The discovery of interesting points in a GRD when the current cell has a

vertically adjacent neighbor. 67

3.11 The two ways in which incomplete cells might overlap. 69

3.12 Generation and handling of multiple incomplete cells. 70

3.13 Intersection of added area in the context of the proof. 71

3.14 Potential types of adjacency for an interval i in an added cell Cnew. 72

3.15 Special cases of alteration of the current cell. 76

3.16 A screenshot of the simulation of DCR. 78

3.17 Problems caused by inaccurate colleague transforms. 80

3.18 Additional environment used for eÆciency testing. 81

4.1 Utilizing collisions to generate a colleague relationship. 86

4.2 Some of the possible geometries of colliding robots. 88

4.3 A schematic description of the \script" followed by a pair of robots after

colliding. 89

4.4 A diÆcult, but possible, collision avoidance. 90

4.5 Con�guration spaces and SIDs for di�erent robots in the same environment. . 93

4.6 Construction of workspace cells for sharing between robots of di�erent sizes. . 94

4.7 System-speci�c sweep-invariant decompositions. 97

4.8 An example of two robots colliding at the outset of coverage. 101

vii

B.1 Commercial planar motor forcer with integrated 3-DOF magnetic sensor. . . 118

B.2 End view of a pair of magnetic platen sensors. 118

B.3 Mechanical schematic of the optical coordination sensor. 120

viii

Chapter 1

Introduction

As the �eld of robotics becomes more mature, the potential has arisen for the development

of teams of robots to perform various tasks. When creating such a cooperative robot team,

the robots need to be able to successfully navigate around each other and achieve their

goals, which in general requires a map and a common frame of reference. And while such

a map can often be developed by hand and given to the robots a priori, it is potentially

more eÆcient (i.e. requiring fewer hours and/or fewer person-hours) and more accurate to

have the robots generate the map themselves. In addition, if this autonomous exploration

is performed cooperatively, its eÆciency can be improved even further. However, it is

also important to ensure that the map creation process is reliable | for instance, that a

complete map of the environment (and one to which all robots can register themselves) will

always be generated. In order to achieve these goals, this dissertation will present a set of

algorithms for cooperative coverage with which a team of robots operating without a central

controller can be shown to always produce a complete map of their shared environment

while simultaneously discovering their relative locations within that environment. A proof

of the cooperative algorithm is also presented which is important in terms of guaranteeing

completeness of the exploration process, but is also a contribution in itself, since the set

of cooperative robotic tasks for which provable algorithms exist is fairly small, and this

algorithm presents a cooperation technique that may be of use in other systems.

The basic problem of coverage is that of planning a path for a sensor, e�ector, or robot to

reach every point in an environment. It is a task that appears in domains as diverse as CNC

machining [1] and plowing �elds [2], and has been solved for arbitrary known planar areas [3].

Typical coverage paths for a sample environment are shown in Fig. 1.1. A more challenging

problem is that of sensor-based coverage, in which there is no a priori information about

1

2 CHAPTER 1. INTRODUCTION

the environment. In this case, the geometry of the area to be covered must be discovered

in order to generate and execute (often simultaneously) a coverage path. Sensor-based

coverage is by nature limited to robotic tasks, in which sensing and actuation are coupled

and the environment may be unknown (as opposed to performing milling operations with a

machine tool, for instance, a task in which the complete geometry is known ahead of time).

Even in this restricted domain, sensor-based coverage is used for a number of di�erent tasks,

such as automated
oor cleaning [4] and landmine detection and removal [5]. A number of

approaches to sensor-based coverage for di�erent robotic systems have been developed and

are described in more detail in Sec. 1.3.1, although a new sensor-based coverage algorithm

was required for the type of system under investigation, as described in Chapter 2.

Coverage tasks are also interesting robotic applications in that they are well suited to

cooperation. Since the goal of the coverage problem is to visit every point in the environ-

ment, it may be possible to divide the environment such that n coverers will each visit 1=n

of the total area in an equivalently short (or even shorter) amount of time compared to a

single coverer. For known areas, this problem has been investigated, and in fact this optimal

eÆciency gain can be nearly obtained for most geometries [6]. For robots operating in un-

known environments, the eÆciency gain will in general not be as great, since the division of

labor cannot be done optimally without complete prior information. However, a signi�cant

increase in eÆciency is still possible, as will be demonstrated in this dissertation. Perhaps

more importantly, a team of robots working without a central controller (a peer-to-peer

team) can often withstand failure of one or more robots in the team, as long as the division

of labor happens on an ongoing basis. This requires that the robots have a way to divide

their common environment among themselves rather than simply accepting commands from

a central decision maker that has complete knowledge about the team. Robots in a peer-

to-peer team also may or may not know each others' initial positions, and if they do not,

the coverage algorithm must also be able to determine the robots' relative locations as they

explore.

In addition, in all of these tasks, whether a spray painting task on a known surface

or a cooperative mine detection task with little or no initial information, there is a need

for assurance of complete coverage. For known areas, a path can be correctly generated

o�-line, but in the sensor-based case, the usual solution (such as the one presented here) is

instead to use a strict geometric algorithm about which correctness can be proven for any

environment of a given class. The extension of sensor-based coverage to multiple robots

introduces additional complexity, since each point in the environment need only be reached

1.1. AAA/MINIFACTORY 3

(a) (b)

Figure 1.1: Typical coverage paths for a given environment based on two common tech-

niques: (a) wall-following and (b) seed-sowing.

by one of several robots, and in order to cooperate, the robots must know (or discover, in

our case) each others' locations, and these processes must be incorporated into the proof

of correctness. However, using multiple robots gives the potential for greatly increased

eÆciency in terms of total time required.

1.1 AAA/Minifactory

While the direct inspiration for both the single-robot and cooperative work presented here

did come from a real-world team of robots, the task domain of the robots in question is

not a traditional coverage application. Rather, the robots are components of the minifac-

tory, a novel modular automated assembly system [7]. The minifactory has been designed to

conform to the Agile Assembly Architecture (AAA), a platform for the development of mod-

ular assembly systems that has been developed by members of the Microdynamic Systems

Laboratory over the last several years [8]. The AAA framework provides for rapid design,

programming, deployment and recon�guration of assembly systems by imposing mechani-

cal, network and algorithmic modularity among the agents in the system [9]. In this case,

an agent is not simply a piece of software, but a physical device with integrated computing

(i.e. a robot) that can support the protocols of AAA. Each agent has not only the ability to

move in its environment and communicate with its peers, but can also represent itself in a

AAA-speci�c language so that it can be simulated with high �delity in a centralized design

and monitoring tool [10].

The minifactory, a small example of which is shown in Fig. 1.2, primarily consists of two

types of agents: couriers (the robots to which this work applies) and overhead processors.

Couriers are small tethered robots based on planar linear motors that operate on a set of

tileable platens which form the factory
oor. The actuated member of a courier, called a

4 CHAPTER 1. INTRODUCTION

Figure 1.2: An example section of a minifactory.

forcer and pictured in Fig. 1.3, is a single body that can move in X and Y at velocities over

1 m/s. The couriers move over the platens to both carry subassemblies and participate in

assembly operations. They interact (both in hardware and over a network) with overhead

processors, such as pick-and-place robots (manipulators), glue dispensers, or screwdrivers, to

perform assembly operations on the product. The couriers have position sensing that retains

accuracies of 20 �m throughout its workspace and has resolution of 0.2 �m (1�) [11] which

has allowed for various forms of closed-loop control [12, 13], enabling them to be robust

and trustworthy members of the minifactory community. In addition, each is equipped with

an upward-pointing optical coordination sensor to locate LED beacons placed on overhead

robots as calibration targets [14, 15]. Details on the operation of these sensors is given in

Appendix B. However, the couriers have no sensing that looks out across the platen, and no

extrinsic contact sensors, so they use only intrinsic contact sensing to detect the boundaries

of their environment. What is meant by \intrinsic" contact sensing is that a courier can

only sense a platen boundary by attempting to move in a certain direction and noting no

change in position | since the forcer
oats on an air bearing that eliminates friction, any

inability to move will necessarily indicate an obstacle.

To support precision assembly operations, a minifactory must be calibrated after being

built. In addition, the rapid deployment and recon�guration demanded by AAA requires

that a minifactory be capable of autonomous self-calibration. This is because the precisions

demanded of the robots' relative positions is greater than can be easily achieved through

1.1. AAA/MINIFACTORY 5

Figure 1.3: The moving part (forcer) of a courier robot sitting on a platen.

manual calibration, whereas self-calibration can very quickly produce an accurate factory

map. The result of this self-calibration, however achieved, will be a complete map of the

platens and overhead robots to which each courier has registered itself. This process will

require the couriers to move about the minifactory from unknown initial locations and �nd

all overhead processors relative to all platens. This problem prompted the investigation of

coverage algorithms for the couriers, both for a single courier as well as for the cooperative

case, since a complete coverage of the factory by the courier's body will determine the

geometric layout of the platens, while simultaneous coverage of the minifactory's airspace

by the coordination sensors will ensure the detection of all overhead robots. In addition,

explicit cooperation between couriers is desirable, since multiple couriers will be available

for this task, and minimizing the overall time to completion is important for getting the

factory operational as quickly as possible.

Aside from the need for a self-calibration technique, several aspects of the minifactory

system make it an attractive one in which to study the coverage problem. The nature of

the high-precision position sensing and optical landmark sensing of the couriers has very

helpful implications for the coverage algorithms, as the dead-reckoning problem common

to mobile robotics tasks can be legitimately discarded. There is some potential for non-

cumulative position error, due to both sensor inaccuracy and environmental irregularities,

but this is a problem which is much simpler to model and handle, as described in Sec. 2.3. In

addition, the restrictive environment of the platens provides a simpli�ed domain to consider

| since all platens are themselves rectangular, the overall environment will necessarily

be rectilinear | making the data representation and implementation of cooperation easier

than for arbitrary environments1. Finally, having only intrinsic contact sensing to detect

boundaries does complicate the map-building portion of coverage for reasons described in

1The potential for extension to less structured environments is discussed in Sec. 4.4.1.

6 CHAPTER 1. INTRODUCTION

Sec. 2.1, but this has been successfully overcome.

1.2 Problem Statement

The core problem faced is then twofold. First of all, a sensor-based coverage algorithm

must be developed that directs rectangular robots with only intrinsic contact sensing to

completely cover any environment with �nite rectilinear boundaries and �nite area. In ad-

dition, this algorithm must be designed in a way that allows for eventual cooperation. The

second problem is then to direct teams of square robots (an extension to some rectangular

robots will also be presented) with intrinsic contact sensing operating in a shared, connected

rectilinear environment with �nite boundary and area to cooperatively cover their environ-

ment. \Cooperatively cover" means that each point in the environment will be passed over

by at least one robot. In this problem, the robots in the team will not know their relative

initial positions or orientations, however, due to the structure of the environment, their

orientation will be one of four distinct values (i.e. with axes aligned with the environment

boundaries) and cannot change. In addition to a solution to this core problem, some exten-

sions will be addressed, most notably the explicit handling of collisions between robots and

the incorporation of limited uncertainty in the robots' positions.

1.3 Previous related work

The work presented here is (to the best of our knowledge) the �rst to perform provably

complete cooperative coverage without the use of an a priori common frame of reference or

modi�cations to the environment. However, it certainly draws from and has similarities to a

variety of previous work in a number of areas of robotics. Research on sensor-based coverage

forms a large portion of directly relevant prior work, with some algorithms displaying similar

overall behavior to our work, but using di�erent internal structure [16, 17], while others go

about the task with di�erent goals and methodologies [18, 19]. The work presented here

also involves cooperation without the use of a central controller, an aspect of robotics that

has previously been seen in more minimalist provably correct algorithms [20] as well as

more generic systems [21, 22]. Finally, cooperative exploration (and even coverage) of an

environment by a team of robots has been investigated [23, 24, 25] but for the most part

not for systems that have no initial team knowledge (such as a common starting point for

the team members) or central controller.

1.3. PREVIOUS RELATED WORK 7

(a) (b)

Figure 1.4: A common approach to sensor-based coverage, in which after the robot (a)

discovers a hindrance to its coverage path, it (b) marks the obstacle and continues coverage

on one side.

1.3.1 Sensor-based coverage

Algorithms for sensor-based coverage have been written for a variety of di�erent robots, en-

vironmental representations, and algorithmic goals (provability, eÆciency, simplicity, etc.).

Some of these have provided inspiration for the work presented here, but none is exactly

applicable to the problem at hand, either in terms of the types of robots under consideration

or in being amenable to the addition of cooperation.

In one class of sensor-based coverage solutions, to which our work belongs, the algorithms

begin by assuming the environment to be simply shaped (e.g. simply connected, monotone,

convex, etc.). To cover its environment, the robot begins to execute a simple coverage path

such as the ones shown in Fig. 1.1, until it discovers evidence that contradicts the initial

assumption, such as at the moment depicted in Fig. 1.4a. At this point, one of several

strategies is used to ensure coverage on all sides of the newly discovered obstacle. This

is depicted generically in Fig. 1.4b as a path continuing below the obstacle with a marker

above the obstacle. Note that for this particular coverage path, an obstacle (such as the one

shown in Fig. 1.4) need not be an \island" in the environment, but simply a feature that

causes an interruption in the coverage path.

The earliest known algorithm for sensor-based coverage of this type is presented by

Huang et al. [26]. It uses a seed-sowing method to cover the free space of the environment

and implicitly builds a cellular decomposition of the environment. It uses a local wall

follower to move around obstacles and (for the example of Fig. 1.4) would perform seed-

sowing below the obstacle until the end of the obstacle is detected, after which it would

follow the obstacle back and cover on the top of the obstacle. However, the details of the

algorithm (including how such obstacle points are detected) are not presented, nor is any

8 CHAPTER 1. INTRODUCTION

notion of the algorithm's correctness. An algorithm presented by Lumelsky et al. in [27]

and extended in [17] produces complete coverage of C2 environments for robots with �nite

non-zero sensing radius by recursively building a subroutine stack to ensure all areas of the

environment are covered. For example, when detecting the \obstacle" shown in Fig. 1.4b,

the coverage algorithm would be called on the area below the obstacle, so that when this

task completed, the robot will return to the corner just detected and continue coverage on

the top side of the obstacle. Although this presentation is one of the �rst to include a proof

of correctness, it does require range sensing and the details of its implementation are not

discussed. In addition, the use of a recursive algorithm implies long-term planning, since the

robot is essentially committed to completing the areas in its stack, which may make it more

diÆcult to incorporate run-time cooperation. A similar algorithm is presented by Park and

Lee [4], although their work explicitly considers the size of the robot in the coverage task,

something that is required for robots with only contact sensing, but their work still requires

that the robots have �nite range sensors.

Another notable feature of the algorithms by Lumelsky et al. is that they do not ex-

plicitly build a map. While this can be eÆcient in terms of memory required and algorithm

complexity, it does not lend itself to cooperation. Sensor-based coverage work by Acar [16],

based on a planned coverage strategy outlined in [28], is similar in overall behavior, but

creates a sparse geometric representation of the environment. In [16], a cellular decomposi-

tion of the environment is constructed and used to form an adjacency graph which in turn

is used to plan coverage. When a speci�c cell (corresponding to a node in the adjacency

graph) has been covered, the robot uses the structure of the graph to plan a path to an

unexplored area, and when the graph has no unexplored edges, coverage is complete. The

cellular decomposition (the form of which is described in more detail in Sec. 2.1.1) is in-

crementally developed, starting with a single cell and adding additional cells as the robot

discovers (as it does in Fig. 1.4) that the environment cannot be represented by the cells

currently in the decomposition. It should be noted that this work is one of the few coverage

techniques that has been demonstrated on a real robot. This work has also been shown

(at least in theory) to work for robots with perfect extrinsic contact sensing, although the

engineering task of implementing such a robot and environment has yet to be undertaken.

The approach of [28] and [16] also helped to inspire the algorithms presented in this work,

especially the single-robot algorithm described in Chapter 2, in which a cellular decompo-

sition of the environment is also incrementally constructed. However, our work explicitly

compiles and uses the complete geometry of the environment, which can be easily done due

1.3. PREVIOUS RELATED WORK 9

to its restricted nature and is necessary for the type of cooperation implemented.

Di�erent approaches to sensor-based coverage have also been proposed. One notable

technique is that of Pirzadeh and Snyder [18], in which the environment is represented by a

uniform grid in which each cell is the size of the robot and represents either a portion of an

obstacle or free space. This work uses a technique referred to as \indirect control," in which

each time a cell is visited, its cost is increased, to encourage the robot to explore elsewhere.

This therefore does not require any planning and can still be proven to produce complete

coverage, which is intriguing in terms of enabling straightforward cooperation. They also

introduce heuristics to improve eÆciency without contravening the proof, and are one of

the few researchers to present quantitative measures of the eÆciency of their algorithm.

However, the use of a coarse grid representation limits the completeness of coverage to a

portion of the interior of the environment. A recent algorithm by Gabriely and Rimon [29]

also discretizes the environment into a grid (in which grid size is equal to the robot size),

but they show that a Hamiltonian path2 through the grid can be constructed as coverage

progresses. The result is that for any environment in which all corridors are at least twice the

width of the robot, coverage is performed along an optimally short path. This is therefore

also a quantitative result (and one that cannot be improved upon), but one that applies

only under a fairly restrictive assumption about the environment.

Yet another approach to sensor-based coverage is probabilistic coverage, in which the

coverer can be proven to eventually reach every point in the environment as the amount of

time spent covering increases. This is an approach often taken in systems (either theorized

or real) in which algorithmic simplicity is more important than exactness of coverage. For

example, robotic lawn mowers to date have used this type of algorithm, since it does not

require mapping or odometry, reducing the sensing and computation requirements of the

mower [19, 30]. Friendly Robotics' Robomow and RL500 [30] move to a boundary (sensed by

detecting a buried wire) and leave the boundary at a small angle from the direction that the

boundary was approached, a technique which, although not proven, can be demonstrated to

perform reasonable coverage [31]. However, these techniques tend to be signi�cantly slower

than the geometric algorithms described above | the speci�cation for the RL500 is that it

can mow 1000 ft2/hr, meaning that at its speci�ed velocity of 0.5 m/s, it mows each blade

of grass an average of just over ten times3, compared with ratios of (on average) 2-3 in our

2A Hamiltonian path in a graph is one that visits each node of the graph exactly once, and by extension,

a Hamiltonian path in a grid is one that visits each cell exactly once.
3This metric will also be used to measure the eÆciency of our coverage algorithms in Chapters 2 and 3.

10 CHAPTER 1. INTRODUCTION

system. In addition, the lack of a map means that the robot has the potential to get stuck

in cluttered portions of the environment.

1.3.2 Cooperative mobile robots

A great variety of work has dealt with teams of mobile robots performing in a common

environment. Some common tasks are maintaining formations [32, 33], transporting large

objects [34], search and rescue [35], surveillance [36], mutual sensing to minimize position

error [37, 38] and collision-free navigation [39]. In addition, cooperative exploration and

coverage have been investigated, and these works are related in more detail below.

One type of application most relevant to this work is that in which, like our algorithm,

the same algorithm is independently executed by each robot in a team (without a central

controller) to achieve a well-speci�ed group task. For example, in the work of Donald et al.

[20], several distributed algorithms were presented, both homogeneous and heterogenous,

with which a pair of robots could perform a cooperative manipulation task. There, however,

the goal was to recast a simple provable algorithm in such a way that explicit communication

was unnecessary, but could rather be implicit in the task mechanics. In our work, however,

the environment is static, and so this reduction is not available. Theoretical approaches to

distributed formation creation have also been developed using local mutual sensing [33], but

these are limited in the behavior they can generate. It is our goal to produce a cooperative

algorithm which performs a somewhat more complex task while retaining provability. Other

work on cooperative mobile robots each executing the same algorithm has focused on the

creation of a speci�c broadly de�ned group behavior. Examples includes tasks as simple as

foraging (see e.g. [40]) or as complex as playing soccer (such as the RoboCup teams at CMU

[22]). This research has not concentrated on proving the correctness of either the individual

or group algorithms, as these concepts do not necessarily apply to such behaviors, but rather

on qualitative and quantitative measures of task performance.

A signi�cant amount of research has also gone in to distributed task allocation among a

team of robots with a large set of overall goals and (often) heterogeneous capabilities. One

notable system is ALLIANCE [21], which is a completely distributed system that uses a set

of behaviors for each robot that can be enhanced or suppressed by the actions of the other

robots. This architecture is generally independent of the tasks to be performed, although it

has been used to implement a cooperative target observation task [41]. Other architectures

for task allocation include ARCO [42], a system that uses a greedy selection by each robot

to choose the easiest of the team's tasks, with communication between robots to prevent

1.3. PREVIOUS RELATED WORK 11

competition between robots, and an architecture proposed by Noreils [43], in which robots

can dynamically and distributedly form sub-teams to achieve speci�c tasks. These e�orts

could perhaps be applied to the problem here, but since our task is essentially the same for

all robots, the division of labor is a simpler problem than for a system with a wide range

of overall goals, and so the overhead inherent in such a system is unnecessary, and in fact

could make guaranteeing complete coverage more diÆcult.

An area of mobile robot research that most closely pertains to the work presented here

is that which investigates algorithms for traversal or complete coverage of an environment

by a team of robots. Although not directly related, tasks in which multiple robots are used

to reach a set of goal locations (in general more quickly than a single robot), faces the same

division of labor concept as the coverage task. In the GRAMMPS system developed by

Brummitt [44] information about the shared environment is exchanged between the robots

while they negotiate about which robot will achieve each goal. The algorithm presented by

Cai et al. [45] also shares data between robots that are exploring a common environment,

although in this case each robot has a single goal and therefore performs all of its own

planning.

Among cooperative coverage research, the vast majority has so far used a central con-

troller deploying robots from known locations, which is not satisfactory for the minifactory

problem, as the couriers will be initially distributed throughout the factory and their posi-

tions will not be well registered relative to each other. A paper by Kurabayashi et al. [6]

describes a method for distributed coverage in a known environment by a team of sweeping

robots. In their work, a single coverage path is computed for the environment, which is

then eÆciently divided amongst the robots in the team. This is the only known e�ort in

cooperative coverage that has been deployed on actual robots, although only a single trial

is reported. An algorithm by Min and Yin [23] produces cooperative coverage assuming

the environment is unknown, calling for sensor-based coverage, but it does assume that the

robots start outside the area to be covered at a common location so that the area division

can be done a priori. This work does not focus on the details of the coverage process,

but rather the key contribution is that the system is robust to failures of individual robots

| when one robot is unable to continue, the other robots negotiate to decide which will

complete the failed robot's assigned area.

Other cooperative coverage work includes a system described by Gage [5] in which ran-

dom walks are performed by each robot in a large team with a common home position

to generate probabilistically complete coverage. Another approach to coverage, in which

12 CHAPTER 1. INTRODUCTION

the environment is covered by robots' in�nite range sensors, is presented by Rao et al.

[46], in which a small team of point-sized robots cooperatively build the visibility graph

of a polygonal environment. A scan from each point in the visibility graph then ensures

complete coverage, although requiring sensing of a type not generally available. Singh and

Fujimura present an algorithm for a team of heterogeneous robots to cooperatively build

an occupancy grid of their environment without a central controller, but assumes that the

robots are initially collocated and share data continuously [47]. An algorithm by Yamauchi

[24] also has each robot construct its own occupancy grid of the environment while sharing

data with its colleague and attempting to view every point in the environment and allows

the robots to be initially distant, but still assumes known initial relative positions for the

robots. In contrast, work by Rekleitis et al. [38] performs coverage using cooperating robots

with mutual remote sensing abilities, but with explicit cooperation to reduce mapping errors

rather than to increase eÆciency. This system then e�ectively acts as a single robot with

excellent positioning accuracy, although the algorithm must generate explicit coordination

between the robots on top of a more standard sensor-based coverage algorithm.

The closest work in this area to the work presented here is that of Wagner et al. [25],

who present both deterministic and probabilistic coverage algorithms for a team of robots

that does not require a central controller or even a common home position. In their work,

however, each robot marks the ground as it travels, so that the robots can each sense what

area has been covered by each of its teammates without having to explicitly share data or

determine their relative positions. In addition, their system requires that the robots have

omnidirectional range sensing of a range at least twice the diameter of the robot. They

present conservative symbolic bounds on the eÆciency of the algorithms and a simulation of

their algorithms, but only a small amount of numerical data for a few simulations of simple

environments, from which it is diÆcult to draw conclusions about the average eÆciency of

their algorithms.

1.4 Document Summary

The remainder of this thesis document will describe the solutions developed to the problems

outlined above. Namely, a basic algorithm for sensor-based coverage is presented and proven

to produce complete coverage of any rectilinear environment, and a cooperative sensor-based

coverage algorithm is then presented and proven to be correct for any environment (with

certain assumptions) and number of robots. Extensions to this algorithm are also presented

1.4. DOCUMENT SUMMARY 13

which make it more amenable to implementation on a real-world robot system.

Chapter 2 details a novel sensor-based coverage algorithm for a single rectangular robot

employing intrinsic contact sensing to cover a rectilinear environment. The algorithm, CCR,

uses no time-based history and no plans longer than a single step, attributes which allow the

robot to easily stop and integrate information from other robots and continue coverage, since

the robot continually replans even when working alone. The ability for the straightforward

integration of cooperation is the key contribution of this algorithm, since it derives from

a technique not previously employed for sensor-based coverage. A proof of CCR for any

�nite rectilinear environment is also presented, verifying that complete coverage will indeed

always be generated. Chapter 3 then presents a cooperative coverage algorithm DCR that

is based on a slightly modi�ed version of CCR. Two additional algorithmic components are

described which induce cooperative behavior without interfering with the ongoing coverage

process, or even requiring that the coverage process be aware of the existence of the cooper-

ation. DCR therefore allows a team of robots to collectively cover their shared environment

without the use of a central controller or a common home position. A proof of DCR is then

presented which takes advantage of this decoupling of coverage and cooperation, but relies

on assumptions of perfect position sensing and the lack of collision between robots in the

team during coverage. Chapter 4 then describes extensions to DCR which allow for the

robot team to operate without some of these assumptions, although only some of the exten-

sions are incorporated into the proof. Also in chapter 4 is a discussion of potential further

extensions both to DCR itself and its proof. Finally, chapter 5 presents some conclusions

and a list of contributions of this work.

Chapter 2

Single-robot coverage

While the overall problem proposed for this thesis is one of cooperative coverage, the unique

properties of the minifactory system required the development of a new coverage algorithm

for a single robot of the type under consideration. While it may be possible to adapt a

previously described sensor-based coverage algorithm to the type of geometries and sens-

ing capabilities speci�ed in the problem statement, the choice was made instead to use this

opportunity to take a somewhat di�erent approach to sensor-based coverage than had previ-

ously been explored. The algorithm developed, CCR (Contact-based Coverage of Rectilinear

environments), a summary of which was �rst presented in [48], departs most notably from

previous algorithms by using a reactive structure that does not make use of time-based

history or long-range plans. This structure allowed the relatively straightforward addition

of cooperation as described in Chapter 3.

2.1 CCR description

CCR was inspired by the work of Choset and Acar [16, 28] and enables a rectangular robot

with only intrinsic contact sensing to perform complete sensor-based coverage of �nite recti-

linear environments. CCR operates by incrementally constructing an exact cellular decom-

position of the environment. This decomposition is composed of a set of non-overlapping

cells, rectangular areas that can each be covered in a straightforward way. Using a cell

decomposition also makes it easy to decide when the environment is completely covered by

making sure that each cell has been covered and that the boundary of the decomposition is

known. The decomposition C is built through a two-stage cyclical approach, and its evolv-

ing structure directs the progress of coverage. Each cycle of CCR consists of �rst selecting a

14

2.1. CCR DESCRIPTION 15

Figure 2.1: A schematic of the components of CCR.

straight-line trajectory based on the current state of C, then executing the trajectory until

it has completed or been interrupted by a collision, at which point C is then updated to

re
ect the outcome of the trajectory. The generic behavior of CCR is to cover each cell

with a seed-sowing path as shown in Fig. 1.1b (and de�ned for CCR in Fig. 2.4). When an

interesting point (representing a cell boundary, de�ned below) is reached, CCR will notice a

disruption to seed-sowing, at which point the interesting point is localized, the current cell

�nished, and seed-sowing begun in a new cell.

Two distinct algorithmic components, shown in schematic form in Fig. 2.1, make up

CCR. The �rst is the map interpreter, which tests C and the robot's current position p

against a list of rules to choose a trajectory for the robot to follow. A trajectory t in the

context of CCR is de�ned by a triple (td; t�; t�), where td is the maximum travel distance, t�

the direction of travel (always one of the four cardinal directions: +x;�x;+y or �y), and

t� an optional direction (also one of the cardinal directions) in which to maintain a contact

force while moving. The other component of CCR is the event handler, which uses the

result of the trajectory and p (after the motion has been completed) to alter C if necessary

to account for new environmental knowledge. This interaction between the low-level robot

control and the event handler is the only place where the quality of the robot's sensors

enters into consideration.

Finally, it should be noted that CCR operates in the con�guration space of the robot,

and so the decomposition that is built is that of the con�guration space. Because the robot

has only contact sensing, this means that the robot can sense (and therefore cover) only a

single point in con�guration space at a time, and so must correctly infer the presence of

boundaries or free space between two sensing events. CCR was originally written to operate

in the workspace of the robot, since the sensor returns (and therefore the correctness of

the algorithm) are more intuitive in the workspace. However, certain details (most notably

16 CHAPTER 2. SINGLE-ROBOT COVERAGE

(a) (b)

Figure 2.2: Examples of (a) an oriented rectilinear decomposition and (b) a boustrophedon

decomposition [28].

in path planning, as described below) made the con�guration space implementation more

attractive.

2.1.1 Cellular decompositions under CCR

The cellular decompositions created by CCR belong to a class that will be called oriented

rectilinear decompositions (ORDs). An example of an ORD is shown in Fig. 2.2a. An ORD

C consists of a set of non-overlapping rectangular cells fC0. . .Cng that collectively span

the free space of the environment. Cells in an ORD are delineated by interesting points,

as seen in Fig. 2.2a, which are de�ned as the x locations of vertical boundary segments.

Each cell therefore has a strictly horizontal and connected
oor and ceiling, and is as wide

as possible while maintaining these constraints. An ORD can be easily created from a

known rectilinear environment by �nding and sorting the interesting points, and can also be

constructed incrementally as described below. This decomposition is conceptually similar to

the boustrophedon decomposition of a C2 environment [28], an example of which is shown in

Fig. 2.2b, in which cells are de�ned by critical points of the boundaries of the environment

relative to a \sweep" along the x axis.

Under CCR, during the progress of coverage, each cell Ci is represented by its minimum

known extent and maximum possible extent, an example of which is given in Fig. 2.3. The

maximum extent, Cix , is represented simply by a rectangle, while the minimum extent, Cin ,

is given by four points, two on the cell's ceiling (tl on the left and tr on the right) and two

on the
oor (bl and br), along with values for the
oor and ceiling. (The reasoning behind

this choice is explained in detail below.) As an example, when the robot begins coverage

with no knowledge of the environment, C will contain a single cell C0 in which C0n has zero

2.1. CCR DESCRIPTION 17

Figure 2.3: The data structures associated with a single cell Ci as represented in CCR; cell

Cj also shown for clarity.

size and C0x is in�nite in all directions. As the robot covers this cell, C0n will increase in

size while C0x will be limited with the discovery of each boundary.

In addition to the minimum and maximum extents of the cell, the width of the portion

of the cell that has been covered by the robot is also represented. This quantity is denoted

Ciw and is represented by two x values Ciwl and Ciwr , where Ciwl < Ciwr . Additionally,

associated with each of the edges of the cell is a linked list of intervals which explicitly

denote the cell's neighbors at each point along the edge. Each interval is represented as

a line segment together with a neighbor ID. A cell is then complete when its edges are at

known location (Cin = Cix), it has been covered from side to side, and all sides have been

completely explored (i.e. a list of intervals spans the height or width of the cell).

In addition to the cell decomposition, CCR maintains a list H = fH0 : : : Hmg of place-

holders. A placeholder is a linear object that denotes an element of the boundary of C

that is not a boundary of the environment, and can be thought of as the \entrance" to

unexplored free space. An interval's neighbor can therefore be a cell, a wall segment, or

a placeholder. As such, it is not necessary to keep an explicit list of placeholders, as the

list could be created by scanning all intervals in all cells and deriving a placeholder from

each such interval. However, creating and maintaining H is a very useful convenience when

in a complete cell and looking for an area in which to continue coverage. A placeholder is

created when exploring the edge of a cell and discovering an area of free space adjacent to

the cell. A placeholder can be deleted either when a new cell is created that represents the

area behind it (which the robot will then cover) or when the robot happens to explore the

area it points to while in another cell. For coverage to be complete, no placeholders can

remain, since they indicate unexplored components of the boundary of C.

18 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.4: The four segments of a seed-sowing path, � through Æ, shown along with the

covered width (Ciw), the position of the robot p and the minimum extent (tr,br) of the cell

before � is executed.

Finally, a list of beacons B is also maintained, mostly for the minifactory task, in

which discovering the locations of all calibration beacons is actually at least as important

as discovering the geometry and topology of the environmental boundaries. For CCR in

isolation, B is not necessary, although it will reappear in cooperative coverage, as the

beacons are useful landmarks when trying to match the maps of two robots in a team.

2.1.2 Overall behavior of CCR

Rather than delving immediately into the inner workings of CCR, a discussion of the overall

behavior of the algorithm will be given �rst, followed by the details of the event handler

and map interpreter. As mentioned above, CCR covers the interior of each cell with a

seed-sowing path, as shown in detail in Fig. 2.4. Once the left or right side boundary of

the cell is detected, CCR directs the robot to complete the cell, usually requiring additional

edge exploration. When a cell is completed, a new target for coverage is chosen and a path

planned to that location. Each of these processes will now be described with the use of some

examples.

A seed-sowing path primarily consists of a series of strips, motions in �y (motion � in

Fig. 2.4) which are separated in x by a distance equal to the width of the robot w, the

concatenation of which will cover the width of the cell. In addition, in order to discover any

gaps in the
oor or ceiling of the cell, the robot maintains contact with the
oor or ceiling

while traveling between strips. These motions are called sliding motions, and are shown in

Fig. 2.4 (and successive �gures1) as sets of angled arrows, and are the motions for which

1Other �gures will also use angled arrows to denote exploration of a wall on the side of a cell, indicating

2.1. CCR DESCRIPTION 19

(a) (b) (c)

(d) (e)

Figure 2.5: The ways that an interesting point can be discovered during seed-sowing.

t� 6= ;). The robot also backtracks after each strip using motions
 and Æ. These motions

ensure that the robot travels to every point on the
oor and ceiling, as shown in Fig. 2.4.

Motions � and Æ (the sliding motions) will terminate when contact with the
oor or ceiling

is lost as well as when contact is sensed in x or the maximum trajectory length td has been

traveled. Each Æ and � motion will move one side of the cell's minimum extent a distance

of w.

Eventually (since the environment is assumed to be �nite), the robot will complete one of

these trajectories in a way that is incompatible with the seed-sowing path. This necessarily

indicates the discovery of an interesting point. There are �ve di�erent ways an interesting

point can be discovered (this statement will be proven below), all of which are shown in

Fig. 2.5, and which will be referred to as discoveries of Cases I-V. Each of these can also

be mirrored both horizontally and vertically, with the same ensuing behavior. Fig. 2.5a

portrays a Case I discovery, in which motion � encounters a vertical boundary, geometry

that is described here as an \internal" corner. Fig. 2.5b represents Case II, in which � loses

contact with the
oor or ceiling, the discovery during sliding of an \external" corner. The

remaining cases are an unexpected collision during motion � (Fig. 2.5c and Case III), an

unexpected non-collision of motion � (Fig. 2.5d and Case IV), or a loss of contact during

motion Æ (Fig. 2.5e and Case V). (The last case is distinct from Case II in that during

motion in �y and contact in �x.

20 CHAPTER 2. SINGLE-ROBOT COVERAGE

(a) (b) (c)

Figure 2.6: An example of localizing an interesting point and continuing coverage.

motion � the robot is beyond the covered portion of the cell while during motion Æ it is

not.)

For some of these cases, since the robot has only intrinsic contact sensing, an interesting

point will be indicated, but additional motion will be necessary to localize it, as discussed

below. Also, in most instances, once the interesting point is localized, the side of the

cell that has just been localized must be completely explored so that the cell is complete

before coverage can continue in the next cell. These activities are each commanded by an

appropriate rule in the map interpreter. For example, for Case IV as shown in Fig. 2.6a,

the robot ends motion � beyond the ceiling of the current cell C0. A new cell C1 which is

taller than C0 must therefore be instantiated around p. The boundary between these cells

is uncertain, lying somewhere between p and the last seed-sowing strip (C0wr), and so the

cells' minima and maxima are set accordingly as shown in Fig. 2.6b. The map interpreter

then notices that C1 (now the current cell) has an uncertain left edge, but must have a wall

at the current y location (the wall responsible for the interesting point separating the two

cells). The robot is directed to the left to localize this corner, at which point the previous

cell is complete (since its side is now known in location and disposition) and the left edge

of C1 will then be explored before seed-sowing resumes.

As another example, for Case III, the robot will follow the course of action shown in Fig.

2.7. In this case, the robot experiences an unexpected collision during motion � which also

indicates an interesting point somewhere between the current position and the previous seed-

sowing strip. The event handler instantiates a placeholder as shown and sets the maximum

right edge of the cell at px, which in turn causes the map interpreter (over three cycles) to

move the robot as shown in Fig. 2.7b. A collision while moving in x will localize the right

edge of the cell, at which point the map interpreter will direct the robot to �nish exploring

the cell's right edge as shown in Fig. 2.7c. The other types of interesting points lead to

similar behavior in order to complete the current cell and return to a state (usually in a

2.1. CCR DESCRIPTION 21

(a) (b) (c)

Figure 2.7: A second example of localizing an interesting point and continuing coverage.

(a) (b)

Figure 2.8: The two ways an interesting point can be discovered during edge exploration.

new cell) from which seed-sowing can continue.

Because of the nature of the seed-sowing and having only contact sensing to detect

boundaries, it is possible to detect interesting points while seed-sowing in one cell that

actually de�ne a di�erent cell. Fig. 2.8 shows the two cases for which this occurs. In these

cases, motion � ends in an internal corner and the robot begins exploring an edge that does

not belong to the current cell. There is then another interesting point lying between the

one just discovered and the previous seed-sowing strip which will then be discovered during

the exploration of the side edge. This interesting point takes one of two di�erent forms as

shown in Fig. 2.8. For each of these cases, the current cell Cc will be split into two | one

comprising all previous strips (and the left side of Cc, if present), and the other comprising

the edge being explored and the current strip. The two cells will have mutual intervals

between them, and may initially have an uncertain boundary, such as after Fig. 2.8a.

One important issue is the de�nition of a known edge and how it relates to the represen-

tation of Ccn . Under CCR, a side edge is de�ned to be known when its minimum (Ccn;right)

and maximum (Ccx;right) are equal. The minimum value for a side edge is in turn de�ned as

the smaller of the
oor minimum and ceiling minimum (\tr" and \br" in Fig. 2.4). The one

issue with this representation is that when the side edge of a cell is �rst discovered (whether

22 CHAPTER 2. SINGLE-ROBOT COVERAGE

or not it turns out to indeed belong to that cell), this edge is considered to be known and

both of the appropriate minimum extents are extended to match the maximum at the dis-

covered edge. This fact allows the interesting point of Fig. 2.8a to be discerned from that of

Fig. 2.5c. However, when the �nal seed-sowing strip is completed, there is still a bit of
oor

or ceiling to be explored | that which lies between the previous strip and the cell edge.

Simply looking at the minimum extents of the
oor and ceiling will not indicate that this

exploration has yet to be done, rather, it must be enforced by maintaining intervals for the

oor and ceiling of each cell. This will be necessary in the cooperative case, as described in

Sec. 3.1, but in CCR, the
oor and ceiling intervals will always be a single interval pointing

to a wall and most of the time will exactly cover the line between the left and right minima

on the
oor and ceiling. The exception is when the edge is discovered, when the minima

are moved to create a known edge but the intervals (rightly) do not | they continue to

represent only the portion of the
oor or ceiling that has actually been explored. Therefore,

the seed-sowing rule is actually based on the
oor and ceiling intervals, rather than the

minimum extent of the cell, so that when the strip (and edge exploration) is complete, this

rule detects that although the cell is covered, the
oor (or ceiling) interval does not reach

the side edge. A �nal pair of motions
 and Æ of seed-sowing are then generated which

extend the interval appropriately.

If the �nal edge (and
oor/ceiling) exploration �nishes without the discovery of an

interesting point, the current cell will be complete (except in the case of exploration of the

�rst side of C0). In this case, CCR must choose a new place in which to continue coverage.

In general, this choice is arbitrary, since there is no way of knowing which traversal of the

environment is most eÆcient. However, if there is an incomplete cell in C, it must be

�nished rather than starting a new cell from a placeholder. This will ensure the existence

of no more than two incomplete cells in C at any time, which in turn allows seed-sowing

to operate correctly at all times, as discussed in the proof in Sec. 2.2 below. If there is

no incomplete cell in C, a placeholder can be chosen arbitrarily, but if the current cell has

a placeholder neighbor, that is chosen to heuristically increase eÆciency. Otherwise, the

lowest numbered placeholder in H is chosen and a path planned to it. A cell is then created

based on the selected placeholder, at which point the robot enters the new cell and begins

seed-sowing again.

2.1. CCR DESCRIPTION 23

2.1.3 Event Handler

The event handler is the portion of CCR responsible for updating C based on the recent

coverage event and current position. In the event handler, the �ve types of interesting points

must be dealt with correctly, as well as the localization steps that follow them. Also, as each

cell is covered, it must be updated so that the seed-sowing process continues as described

above. This update process is not particularly
exible, rather, C must end up showing a

wall where collisions have occurred, cell edges at interesting points (uncertain in location

when appropriate), etc. It is just a question of correctly testing for and handling all possible

occurrences.

The event handler is executed after each coverage event, which occurs at the end of each

trajectory, and is of one of three types: a collision, a loss of contact (for sliding motions), or

completion of the maximum distance of the trajectory. The event handler must then use the

type of coverage event, the direction of the trajectory just ended (t�), the type of trajectory

(free motion or sliding) and the current position p to determine the type of interesting point

detected, if any, and if not, whether new information has been obtained. A collision is �rst

checked to see if it was expected (i.e. whether p is at the t� edge of the current cell). If not,

either because that edge of the cell was not yet known or because an interesting point has

just been detected, the current cell is updated appropriately. For non-collision events, the

event handler checks to see if p is outside Ccx. If so, this will indicate an interesting point

discovery of Case II, IV, or V.

The great majority of the action of the event handler is therefore broken into (and will

be described here in) two parts | handling of collision events and handling of non-collision

events (including loss of contact for sliding motions). First, however, it checks to see if a

sliding motion has just been completed. If this is the case, regardless of its outcome, the

interval corresponding to the edge that was being pushed against is extended as far as p.

This is implicit in the de�nition of a sliding motion | until its completion, the robot was

in contact with the edge that it began the motion in contact with. It is also important to

extend this edge immediately, since only after a sliding motion can an interval be extended

a large distance (otherwise, since the robot has only intrinsic contact sensing, two touches of

a wall that are distant from each other do not necessarily indicate that there is an unbroken

wall between them). Once this has been done, the handling of collisions or loss of contact

events is handled as follows (a more complete description is given in Appendix A).

For collision events (including those with internal corners), the event handler �rst checks

to see if the edge of Cc in the direction of travel t� is already known. If this is not the case,

24 CHAPTER 2. SINGLE-ROBOT COVERAGE

then this event necessarily indicates new knowledge, although the exact action of the event

handler depends on t� . If t� = �x, the collision can represent either the initial discovery of

a side edge or the localization of an uncertain cell boundary. In either case, the t� edge of

Cc is set to px and a wall interval added to the t� edge at py if not already present. In the

case of localizing an uncertain edge, Cc will have a neighbor across that edge (either a cell

or placeholder) which must be altered to meet Cc at px. For collisions where t� = �y, the

situation is a bit more complicated. Since the robot may be exploring a placeholder on the

side of a cell, it may actually be outside Ccx , and as such the collision may simply represent

the end of the placeholder rather than the actual cell ceiling or
oor. The event handler

therefore checks for p 2 Ccx , and if this is not the case, puts a short interval with a wall

neighbor at the end of the current placeholder interval2. Otherwise, the
oor or ceiling has

been discovered and is set to py with a short wall interval added at px.

If the robot has instead experienced a collision in a direction where the edge of the cell

is known, the �rst check is to see if the collision was indeed at the expected location for that

edge. If this is the case, the �rst required action is to extend the interval along the edge,

and if t� = �y, the event handler also checks for a seed-sowing strip in progress, and if one

exists, Ccw is extended to include the strip. Otherwise, the robot has experienced a collision

before reaching the known edge of Cc, and so an interesting point has been discovered. The

event handler must then discern whether the discovery is one of Case III (shown in Fig.

2.5c) or the one in Fig. 2.8a, which is done by looking to see if the edge of Ccn nearer to

p is known. If the edge is known, the cell should be split: a new cell with zero minimum

width is added to account for the area to the right of the interesting point, and the new cell

is given the intervals previously assigned to Cc, while Cc gets a single interval pointing to

the new side. If the near side of Cc is unknown, on the other hand, this is Case III, and so

a placeholder is added at px with its height from py to the far edge (
oor or ceiling) of Cc

and the near side of Ccx is set to px.

For non-collision events, whether due to the completion of a trajectory or the loss of

contact during a trajectory, the event handler just checks to see if p is within Ccx. If this

is the case, no action needs to be taken, but if not, C will need to be updated one way or

another to account for the free space at p. If p is outside Ccx only in x, then this simply

means that there is free space adjacent to Cc at py. The event handler checks for the

existence of an interval at py on the side near p, and if none exists, for another cell Co that

contains p. If there is such a cell, it must have a placeholder at py, and this placeholder

2Giving the interval an endpoint will cause the map interpreter to move the robot back inside Cc.

2.1. CCR DESCRIPTION 25

(a) (b) (c)

Figure 2.9: Cell C3's maximum extent C3x is (a) initially semi-in�nite, but (b) is limited by

other cells' minimum extents, so that upon reaching the edge of the cell in (c), the robot is

not in two cells simultaneously.

should therefore get deleted and its interval changed to point to Cc, while Cc gets a matching

interval to Co. If there is no other cell, a new placeholder is added (with zero height) at py.

Finally, if the robot is outside the cell in the y direction, an interesting point is almost

always indicated. Similarly to collision events, there is �rst a determination to be made

as to whether Cc needs to be split, the determination made in this case if px is within the

width of Ccn . This is the case of Fig. 2.8b, and the event handler will build a new cell to Cc

with uncertain boundary between them. Alternately, if px is not within Ccn (but still within

Ccx), this is Case IV as outlined in Fig. 2.6 and a new cell is added as shown. Finally, if px

is outside Ccx in x as well as y, the robot must be �nishing the exploration of a placeholder

at the
oor or ceiling of the cell | the event handler then has nothing to do other than

extend the interval being explored, as the map interpreter will direct the robot back into

the cell to complete it.

Finally, regardless of the changes made to C, the event handler checks for any cells that

overlap the current cell and resizes them as necessary to remove the overlap. Speci�cally, if

for any cell Ci, Cin\Ccx 6= ;, Ccx is shrunk in x so as to abut Cin . Similarly, if Cix\Ccn 6= ;,

Cix is reduced. An example of this process is shown in Fig. 2.9. This is always a correct

thing to do, since no two cells' �nal extents will overlap, and the minimum size of a cell will

not be reduced. In addition, this will allow the map interpreter to correctly determine the

robot's current cell, and allow the event handler (eventually) to notice that the robot has

left the cell, as shown in Fig. 2.9c.

2.1.4 Map Interpreter

Once the event handler has updated C, it is up to the map interpreter to generate the next

trajectory by which coverage will continue correctly by using an ordered list of rules. The

26 CHAPTER 2. SINGLE-ROBOT COVERAGE

predicates of each rule rely only on C and the robot's current position p, rather than an

explicit notion of state. This structure also implies only single-step planning | there is no

explicit plan or script that the robot is to follow.

In order to generate the behavior described above, the map interpreter �rst tests a series

of rules that attempt to \clean up" the current cell, since these actions take precedence over

simple seed-sowing. These rules create the motions shown in Figs. 2.6 and 2.7 and other

similar actions. If none of these rules apply to the current situation but the current cell is

not complete, then seed-sowing can and should be continued from p. Finally, if the current

cell is complete, the �nal three rules will choose an appropriate place to continue coverage

and direct the robot to that place.

Before the rules are evaluated, the map interpreter �rst must decide what cell(s) the

robot is currently in. This is done by testing for p 2 Cix8Ci 2 C, which is simple since

Cix is a rectangle for all cells. A compact version of the rules is presented here, with some

further descriptions and insights to follow, while a more complete rendering in pseudo-code

is presented in Appendix A.2.

1. If p is in two cells, move in �x just inside the cell with larger y extent. Otherwise, p

should be in only one cell, call that cell Cc.

2. If Cc has a side edge with �nite uncertainty (0 < jCcx;side � Ccn;side j <1), move into

Ccn to a y location where the side edge is known to contain a wall, then move toward

the wall.

3. If Cc has a side edge at a known position but whose intervals do not span the edge,

go to the nearest unknown y location along that edge and move away from the known

portion of the edge (maintaining contact with the edge if a wall is present).

4. If Cc has unknown ceiling or
oor, move in +y or �y respectively.

5. [Seed-sowing] If Cc is not complete, for the nearer unknown side, move to a point just

past the edge of Ccn;side , then move along the nearby
oor or ceiling while maintaining

contact to a point w beyond the last strip; if at such a point, start a new strip by

moving in �y.

| If this point is reached, Cc is complete.

6. If there is an incomplete cell in C, plan a path to it as described below and take the

�rst step along that path.

2.1. CCR DESCRIPTION 27

7. If Cc has at least one placeholder neighbor, choose the nearest placeholder neighbor

and move toward it (�rst in �y if necessary, then �x). When moving into the area it

represents, create a new incomplete cell Cn+1 based on the placeholder.

8. If there is any placeholder in H, for the �rst placeholder in H, plan a path to the cell

it adjoins and take the �rst step on that path.

Rule 1 takes care of the case shown in Fig. 2.8a, after which both the new small cell and

the original cell contain p. This rule moves the robot into the original cell, at which point

Rule 2 will take over to localize the boundary between these two cells. Rule 2 also directs

the processes shown in Fig. 2.7 and Fig. 2.6, although there are several di�erent tests within

Rule 2 which generate these di�erent trajectories.

Rule 3 will produce monotonic exploration along the side of a cell. Walls and placeholders

will each be explored in turn, with a coverage event occurring when the cell's neighbor along

the edge changes from one type to the other. The predicate of Rule 3 is �rst tested for the

side of the cell nearer the robot, then for the other side. This is important when a cell is

split as in Fig. 2.8b, but otherwise will have no e�ect, as there will be only one partially

explored side in the current cell.

Rule 5 will produce the seed-sowing path pictured in Fig. 2.4. Rule 4 is essentially a

special case of this rule, making the minimum extent of the cell well-de�ned before seed-

sowing begins. It should be noted that upon the creation of a new cell from a placeholder,

the
oor or ceiling of the new cell may be unknown as shown in Fig. 2.14, but Rule 3 will

take precedence. One side of the new cell will be known (as described below), but since the

maximum possible
oor or ceiling will be in�nitely far away, the edge will not be completely

explored until that
oor or ceiling is discovered, at which point neither Rule 3 or Rule 4

will apply.

Rules 6 and 8 both require the robot to move to another cell that may be arbitrarily

distant from its current location. This is done through the implicit creation of and search

in an adjacency graph of the cells, with the search a simple depth-�rst approach that checks

for and avoids cyclic paths. This is done by starting with the cell Cd that is the robot's

intended destination, and checking all of its intervals for neighbors that are also cells. If Cc

is not one of these neighbors, then one of Cd's neighbors is chosen, added to a list of visited

cells, and its intervals are checked for cell neighbors to be successor states in the search. This

search process continues in a depth-�rst manner, skipping cells already in the list of visited

cells, until a path is discovered to Cc. At this point, the search function simply returns

the �rst cell after Cc on the path, which is the next to last cell on the path as generated

28 CHAPTER 2. SINGLE-ROBOT COVERAGE

from Cd to Cc. The map interpreter then �gures out which direction to travel from p to

enter (or prepare to enter) that cell. There will be at most two steps to get from one cell to

another, with a motion in �x always necessary and always being last, since two neighboring

cells always share a vertical edge, and a move in �y before that may be necessary if the

destination cell does not span Ccy . Further details are given in Appendix A.

It is also important to note that this path planning makes implicit use of the fact that

C is represented in the con�guration space of the robot. The planning assumes that a path

through C can be directly transformed into a path for the robot. If C represented the

workspace, this would not be the case, since the robot could be wider than some cells, and

so the path planning would have to explicitly consider the robot's extent. The fact that

this type of path planning is traditionally done in the con�guration space of the robot is

what in
uenced the choice of environment representation for CCR despite the non-intuitive

nature of the intrinsic contact sensing in con�guration space.

2.2 Correctness Proof

As stated earlier, one of the key facets of a coverage algorithm is a guarantee (either exact or

probabilistic) of complete coverage. For CCR, we will show this through the construction and

analysis of a �nite state machine (FSM) representation. Although CCR does not explicitly

represent state (a fact that becomes very important for the extension to the cooperative

case), the behavior of the robot can be determined at any time by the cell decomposition C

and the current position p. These data therefore can be considered to be the implicit state

of the algorithm. The state will be represented here as (C; p), with C 2 C and p 2 IR2.

This is not necessarily helpful, however, as the space C of all possible cell decompositions

is of in�nite dimension.

One way to turn the space fC � IR2g into something more manageable comes from

noticing that many similar states produce output from the map interpreter that is either

exactly the same or similar in intent. Therefore, it should be possible to create equivalence

classes in the space fC� IR2g. The equivalence relation chosen for the proof here is based

on the rules of the map interpreter described above. Namely, any (C; p) pairs that invoke

the same case of the same rule are considered equivalent. For example, all states for which

motion � of seed-sowing is produced, regardless of its length or direction (+y or �y), are

considered equivalent, but a state for which motion
 is appropriate would not be in the

same class. It should be noted that for the following proof, this equivalence relation was

2.2. CORRECTNESS PROOF 29

not constructed a priori, but rather each class was recognized as the possible evolution of

(C; p) was tracked. The transitions between states represent the possible outcomes of the

trajectory generated for that state, which can number from one to four for each state. These

transitions must be considered uncontrollable in the context of the FSM, and come from the

various types of coverage events (trajectory completed, collision, or loss of contact) together

with whether a collision (if one occurred) was at the expected location.

With this background, the correctness of CCR in any �nite environment (where \�nite"

means �nite area as well as a �nite number of boundary components) can now be shown:

Proposition 2.1 A rectangular robot with perfect position sensing running CCR will pro-

duce complete coverage of any �nite rectilinear environment.

Correctness of CCR is shown through the construction and analysis of an FSM that

represents all possible evolutions of the state of the algorithm. It will be shown that the

traversal of all loops in the FSM induce a measure of progress that is bounded from below,

and that the only terminal state is that where coverage is complete. Therefore, since the

environment is �nite, the robot will eventually complete coverage and CCR will terminate.

The complete FSM is too detailed to show at once, but a graph is given in Fig. 2.10 that

encapsulates the basic structure of the FSM, and the initial discussion will revolve around

this representation. Each node in Fig. 2.10 represents one or more states of the FSM which

together form a basic \behavior" of CCR, i.e. seed-sowing, edge exploration, etc. The

basic progress of CCR can also be seen in this graph, as seed-sowing (node A) leads to the

discovery of an interesting point (nodes B, D and E), which in turn leads to edge exploration

(nodes C and F) and cell completion (node X) and/or the resumption of seed-sowing.

At this level, it can be seen (when taken at face value) that the only terminal node is

that where coverage is complete, denoted \end" in Fig. 2.10. In addition, all cycles in this

summary graph contain the completion of a cell. Cell completion is one type of progress

toward complete coverage, since once complete a cell need never be entered again (it may

be entered while the robot is traveling to incomplete area, but this will not revoke its

complete status). Since the environment contains a �nite number of boundary segments,

it by de�nition contains a �nite number of cells, and so a �nite number of traversals of

this graph will therefore complete coverage. The description of the nodes themselves will

describe all possible state transitions, based on each possible outcome of motion from a

given state. This in turn will show that these nodes do not contain any terminal states and

that all internal cycles also include a measure of progress that is bounded from below and

will therefore eventually be exited. This ensures in turn that the traversal of the graph of

30 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.10: A summary of the FSM representation of CCR, in which grey dots represent

the completion of a cell.

Fig. 2.10 will continue as the robot moves under the direction of CCR.

There is one exception to the assurance of cell completion in the graph of Fig. 2.10 |

when initially exploring cell C0 (and only in this case), both sides of the cell will be unknown.

In this case, CCR will perform seed-sowing to the right, and explore the right edge of C0,

just as if the left edge was known. This is because the seed-sowing rule always looks to the

right if both sides are unknown, and once an interesting point is discovered, the right edge of

C0 will be attended to before seed-sowing resumes on the left. The di�erence between this

progression and the progression in any other cell is that the cell completion event will instead

be a \half-completion" event. Progress toward coverage is still assured, however, since this

half-completion can occur only once. If the �rst interesting point discovered leads to node

F, the robot will remain in C0, returning to node A to �nish it before starting another cell.

If on the other hand the �rst interesting point leads to node C (this will happen for Case

IV discoveries), the robot will create and enter C1 while only half-completing C0. However,

Rule 6 will eventually direct the robot back to C0 to complete it.

This policy also ensures that C will never contain overlapping incomplete cells. When

an interesting point (other than the �rst one) is discovered, the robot's current cell will be

completed, with the robot creating at most one new incomplete cell. This means that the

number of incomplete cells will not increase upon the discovery of an interesting point. Only

in the case described in the previous paragraph, in which C0 is not completed when C1 is

instantiated, is this not true. In this case, C0 and C1 will share a common vertical edge,

with C1 to the right of C0, and therefore will not overlap. Then, once the robot is in C1, it is

only possible to create another incomplete cell through another interesting point discovery

of Case IV. However, the cell created at this time will lie further to the right of C1 and

2.2. CORRECTNESS PROOF 31

Figure 2.11: The states of CCR during seed-sowing (node A of Fig. 2.10), the descriptions

of which correspond to the motions shown in Fig. 2.4, but also apply to the mirrored cases.

therefore also cannot overlap C0. Further incomplete cells can be created in this manner

(each time with the completion of the previous cell), but eventually a cell will be completed,

at which point the robot will return to C0 to complete it. From this point on, there will be

at most one incomplete cell in C, and so there can never be overlapping incomplete cells.

When CCR begins operation, C consists of a single cell C0 with in�nite maximum extent

and zero minimum extent. The map interpreter will �rst use Rule 4 to discover the ceiling

and
oor of C0. At this point Rule 5 will always be the only applicable rule, and seed-

sowing will begin. This process is represented in Fig. 2.10 as node \begin" leading into

node A. Once in node A, seed-sowing continues until an interesting point is reached, which

can happen in the �ve cases shown in Fig. 2.5. The individual states and transitions that

make up node A are shown in Fig. 2.11.

Node A: In the absence of another incomplete cell Cj overlapping Cc (Cjx \ Ccx 6= ;),

seed-sowing will continue as described in Fig. 2.4. (If such a cell existed, Rule 1 would apply,

and would not be guaranteed to produce the correct behavior, but the above argument shows

that this cannot happen.) The four motions �; �;
, and Æ each invoke a transition as shown

in Fig. 2.11. Each traversal of the cycle in Fig. 2.11 includes a complete seed-sowing strip,

which in turn increases the covered area Ccw by an amount w each cycle. Since the cell

is de�ned to be of �nite width, eventually this cycle will be exited by the discovery of an

interesting point.

32 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.12: States of CCR during exploration of the initially discovered side of a cell,

corresponding to node C of Fig. 2.10.

Interesting points can be discovered at �ve points in this cycle, as denoted in Fig. 2.11,

each of which leads to a state represented in a di�erent node in Fig. 2.10. Motion � may

either end at a collision with a vertical wall segment (Case I shown in Fig. 2.5a), leading to

node F, or lose contact with the
oor or ceiling (Case II), leading to a state represented in

node D. Motion � may experience a collision before reaching the
oor or ceiling of the cell,

Case III as shown in 2.5c and leading to node E, or may reach the end of the trajectory

(traveling beyond the
oor or ceiling), a Case IV discovery leading to node B. Finally, if

motion Æ discovers a gap in the
oor or ceiling (a discovery of Case V), the side of the

current cell is de�ned to be at that corner, with the robot now in a taller cell and its state

in node C. The progress of coverage through each of these nodes will now be described in

turn, showing that all possible results are represented in the overview of Fig. 2.10.

Node B: This node is entered when motion � has concluded without collision, and

consists of only a single underlying state. The state is one in which the current cell has one

side unknown and the other with �nite uncertainty (as shown in Fig. 2.6b). Rule 2 will be

applied in this case, and will immediately direct the robot to move in �x to localize the

uncertain edge. This transition leads (C; p) to state C1 within node C, as de�ned in Fig.

2.12.

Node C: This node represents all states in which one side of the current cell is at known

location and partially explored and the other side is unknown. It can be reached from node

B as described above, or directly from node A. It can also be entered just after a new cell

has been created from a placeholder, as described below. In all of these cases, Rule 3 is the

applicable one, directing the robot to explore the edge before beginning seed-sowing. The set

of states that makes up this process is shown in Fig. 2.12, with state C1 an archetypal state

2.2. CORRECTNESS PROOF 33

in which the edge is explored just as far as the robot's current position, the edge contains a

wall at the current y position, and the robot is within Ccx . The trajectory directions given

in Fig. 2.12 are for the case in which the left edge of the cell is being explored from
oor to

ceiling, such as in Fig. 2.6c, but the same states apply for a cell re
ected about either axis.

The state evolution during the edge exploration process contains one cycle that repre-

sents the exploration of free-space and creation of a placeholder. From state C1, the robot

uses a sliding motion to maintain contact with the wall until one of two events occurs. Since

the ceiling of the cell is unknown at this time, the maximum length of the trajectory (td)

is 1, and so the trajectory will only end with contact in y or loss of contact in x. For y

contact events, the edge may be completely explored, in which case seed-sowing begins in

node A, or could be half explored, in which case the robot moves to the remaining unex-

plored section of the edge. This latter case occurs when a cell is created from a placeholder

of the type depicted in Fig. 2.14c such that the placeholder represents the middle of a side

of the cell. That is, the interval corresponding to the placeholder reaches neither the
oor

nor the ceiling of the new cell. In this case, the \nearest point" rule will keep the robot to

one side of the known portion of the edge until the robot has reached the
oor or ceiling.

At this point, rather than beginning seed-sowing, Rule 3 will then direct the robot to the

other unknown portion of the edge, at which point it will again be in state C1. This can

happen only a single time, however, and so progress will be maintained.

The other potential coverage event during the edge-following trajectory is that contact

may be lost in x. In general, this causes a new placeholder to be created, leading the robot

to explore it through the cycle of states shown and back to C1 (a \capped" placeholder

is one with another interval beyond it, which is placed there to make the map interpreter

move the robot back inside Cc). If another cell is present on the other side of the edge

being explored, however, a new placeholder will not be created, but rather the other cell's

placeholder will be deleted and a mutual interval created between the two cells. The robot

will then be directed to move beyond this new interval (since it represents known area) and

will return to state C1. For this cycle, the measure of progress is the length of the explored

portion of the edge under consideration | as long as this length increases by a �nite amount

for each traversal of the cycle, the cycle will eventually be exited. To show that this is the

case, note that the exploration takes place in con�guration space and so each wall segment

must be at least as tall as the height of the robot. Therefore, each sliding motion leaving C1

(after the �rst one, which may start in the middle of a wall segment) will cause the robot

to move at least as far as its height, and so a traversal of this cycle causes the length of

34 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.13: The states involved in exploration of the second known side of a cell, corre-

sponding to node F of Fig. 2.10.

the explored portion of the edge to increase by that amount. Once the edge is completely

explored, none of the �rst four rules will apply, and the state of (C; p) will return to node

A.

Node D: This node also includes just a single state, that shown in Fig. 2.5d. In this

state, the location of both sides of the cell are known, but the robot is actually beyond both

the height and width of the current cell, and only a single point of the near side edge has

been explored. A special case of Rule 3 will direct the robot in �y, at which point the state

of CCR will be in a state in node F, a transition shown in the upper left of Fig. 2.13.

Node E: This node includes a series of three states with only one set of possible tran-

sitions between them. These states correspond to the process shown in Fig. 2.7, in which

a collision during motion � of seed-sowing leads to the instantiation of a placeholder at an

uncertain x location followed by its localization. A motion into Ccn , followed by a motion

in y to move next to a wall, followed by a move in x to localize the corner are all directed

by Rule 2. These motions will result in the state of CCR being in state F1 in node F.

Node F: This node is similar to node C, in that it contains a cycle of states and

represents the exploration of an edge (note that the upper portion of Fig. 2.13 is quite

2.2. CORRECTNESS PROOF 35

similar to the upper portion of Fig. 2.12). The basic concept that exploration continues

along the edge while making �nite progress is also in place here, so the only cycle in this

node will also eventually be exited. In addition, the explored portion of the edge will always

extend all the way to the
oor or ceiling, eliminating the need to run through these states

a second time for the same edge. However, in this node, the \other" edge (the one not

being explored) is known, as is the
oor or ceiling toward which the the robot is exploring.

These allow the exploration to lead to more possible outcomes, in particular the possibilities

described in Fig. 2.8. It should be noted that from this point in the discussion (as well as

in Fig. 2.13), the exploration described by node F is assumed to take place upward along

the right edge of the cell as shown in Fig. 2.7c. Also, state F1 is de�ned as one in which

the robot is in a cell with one explored edge and the other edge explored from the
oor or

ceiling to py.

Three of the new possible outcomes are di�erent results of the sliding motion along the

edge while inside the cell (the motion leaving state F1). First of all, if the robot �nds the

ceiling at the expected location, it must then backtrack to check the last portion of the

ceiling for gaps. This is done with the same motions
 and Æ used in seed-sowing. If the

Æ motion reaches the cell edge, there is no gap, and so the cell is complete, putting (C; p)

in node X. If there is a gap, however, the cell is split in a similar fashion to the split made

during seed-sowing, likewise completing the current cell while putting the robot in a new

cell. However, in this case, the right side of the new cell takes the known location of the

right side of the current cell, so both sides of the new cell are at known locations (but only

partially explored, since the new cell is of unknown height). This means that (C; p) will be

in node G as described below.

Another new possibility upon leaving state F1 is that the robot will experience a collision

before the ceiling is reached, the situation depicted in Fig. 2.8a. In this case, a new small

cell Cn+1 is built between the previous right edge of Cc and Ccwr , the rightmost extent of

the covered portion of Cc. This new cell necessarily overlaps Cc, so Rule 1 then �res (this

is the only case for which this rule applies), directing the robot into the necessarily taller

Cc. The boundary between Cn+1 and Cc is then localized under the direction of Rule 2,

at which point the right edge of Cc is once again at known location and explored as far as

py, indicating that (C; p) is once again in state F1. Although this process results in the

traversal of a loop in the FSM, it includes the completion of a cell, and so it can only occur

a �nite number of times.

The �nal new result of the edge-following motion is that it may continue past the known

36 CHAPTER 2. SINGLE-ROBOT COVERAGE

ceiling of the current cell, such as shown in Fig. 2.8b. In this case, the current cell will be

split, since an interesting point must lie between the edge being explored and the last strip

of seed-sowing. A new cell Cn+1 is then created with an unknown ceiling and its right edge

equal to the right edge of Cc. An uncertain boundary is instantiated between Cn+1 and Cc,

which is immediately localized under Rule 2, at which point the shorter Cc is complete (its

entire right edge adjoins Cn+1 and it has been covered as far as its right edge). The robot's

current cell is then Cn+1, at which point the state of CCR is in node G, described in more

detail below.

Finally, the robot can go past the ceiling of Cc while exploring a new placeholder, a

transition shown at the left of Fig. 2.13. This is a slightly di�erent state than the one shown

in Fig. 2.8b in that the robot will be outside the cell in both x and y at this point. Rule 5,

which directs the robot to perform the �nal backtracking of the ceiling of the cell, will detect

this situation and move the robot in �y before performing the last backtracking move as

described above for the case where the edge exploration ended at the cell's ceiling.

Node G: This node represents the unusual case in which the current cell has both

sides at known location but both only partially explored. This comes about only from the

instances in node F mentioned above, and in each case, a cell completion event occurs at

the transition to node G, as represented in the summary graph of Fig. 2.10. Once in node

G, Rule 3 directs the robot to explore the side nearer the robot, which is done as in node C.

Once this edge is completely explored, the cell will have one explored edge and one partially

explored edge. A move in y back to the nearest unknown point on the other edge will return

the robot to state F1.

Node X: This node represents the states when the robot's current cell Cc is complete,

as well as when the exploration of the �rst edge of C0 has just been completed. From here,

there are four possible types of actions, depending on the structure of C. In some sense,

this is the one state from which the transition can be controlled, although the choice is

preordained in the rules rather than being made at run-time. In the case of the current cell

being a half-complete C0, seed-sowing will once again begin toward the opposite side of the

cell as described in node A. Otherwise, if C0 is incomplete but is not the current cell, a path

will be planned to it, and when entered through its known side, seed-sowing will also begin.

Otherwise, if there is still a placeholder in H, CCR will direct the robot to it, build a

new cell from it and delete it. Depending on the geometry of the placeholder relative to its

neighboring cell (the three possibilities are shown in Fig. 2.14), once the robot enters the

new cell, its state may be in node A or node C. If the placeholder does not have known walls

2.2. CORRECTNESS PROOF 37

(a) (b) (c)

Figure 2.14: The possible geometries of placeholders being turned into cells.

above and/or below it, as in Fig. 2.14(b,c) the edge of the new cell will not be completely

explored, and so CCR will enter node C, in which the edge exploration process will transpire

as described above. If, however, the placeholder is known to take up the entire edge of the

new cell, seed-sowing can commence immediately, with the state of CCR directly entering

node A from node X.

In either of these cases, it may be necessary for the robot to travel through a series of

cells to reach its destination (a placeholder or an incomplete cell). This can be proven to

occur correctly by showing that the depth-�rst search through the cells will always be able

to create a path from any cell to any other, and will keep to a consistent plan (with one

exception noted in the next paragraph), even though a destination is chosen and a path

planned after the execution of every straight-line trajectory. First of all, the destination

chosen by Rules 6 and 8 will be the same after each trajectory, since the map interpreter

merely selects the incomplete cell C0 if present or the remaining placeholder with the lowest

number, and no placeholders can be deleted or cells �nished by moving through complete

cells which (by de�nition) have no placeholder neighbors. It is also the case that the search

performed by the map interpreter will (if allowed to search all cells in the environment)

produce a spanning tree over the cells: once a cell is added to a potential path during the

search, it will not be used again, so each cell appears in the search tree exactly once | the

de�nition of a spanning tree. Since the path planning process begins at the destination, the

same cell will always be at the root of the search tree, and since the succession rules for

the search and tree creation are the same, and the adjacency of cells does not change, the

same spanning tree will be created each time. Then, since the path is planned along this

spanning tree, which by de�nition has no cycles, there is only one possible path from the

current cell to the destination, and so the path must be consistent as the robot makes its

way to its destination.

It is possible that while traveling along such a path to a distant placeholder the robot

is directed through a cell with a placeholder neighbor. After the robot enters such a cell,

38 CHAPTER 2. SINGLE-ROBOT COVERAGE

during the next cycle of the map interpreter Rule 7 will be invoked instead of Rule 8. This

is actually better in terms of average overall eÆciency, since the placeholder chosen by Rule

7 is likely to be nearer than the one chosen by Rule 8. And since the choice of placeholder

is arbitrary as far as the correctness of CCR is concerned, this is acceptable (and in fact

preferred) behavior.

Finally, if there are no incomplete cells or placeholders, it must be the case that the entire

boundary of C is de�ned by walls and its interior covered (as it is made up of complete

cells). In this case, since no rules apply to (C; p), CCR correctly stops operation and reports

successful completion of coverage.

This enumeration of all of the states and transitions in the FSM representation of CCR

veri�es that the summary diagram presented in Fig. 2.10 is indeed representative of all

potential state evolutions. In addition, it has been shown that all cycles within these nodes

will eventually be exited, so that progress will always continue to be made in the summary

graph. Therefore, since a �nite number of traversals of the summary graph will result in

complete coverage for any �nite rectilinear environment, CCR will always produce complete

coverage.

2.3 Implementation

CCR was implemented both in simulation and on a minifactory courier. A simulation was

developed �rst that did not use sliding motions, and since the output of CCR in this case is

simply direction and distance, developing an interface between the underlying courier control

and CCR was fairly straightforward. The modi�cations required to avoid sliding motions

are detailed in Sec. 2.3.1. Once sliding motions were available on the courier, this was also

implemented in a straightforward way, since each output of CCR is a trajectory with only

three parameters (td; t� ; t�). Some small modi�cations required for CCR speci�cally for use

on the courier are described in Sec. 2.3.4.

When running, the simulation generates a pair of windows in which the user can monitor

the progress of coverage, as shown in Fig. 2.15. The window displayed in Fig. 2.15a is a

representation of the entire environment and the robot's position and progress in it | the

darker gray rectangles are obstacles in the environment, while the lighter gray area is the

area covered by the robot so far. The other window contains a representation of the cell

decomposition, including the maximum of each cell, the minimum of each incomplete cell,

and all placeholders.

2.3. IMPLEMENTATION 39

(a) (b)

Figure 2.15: An annotated screenshot of the simulation of CCR: (a) a representation of the

entire environment and (b) a representation of C (with text overlays added by hand).

The basic structure of the simulation is essentially as shown in Fig. 2.1. In place of the

robot, however, the simulation contains a world modeler, which tracks the progress of the

robot through the environment and determines when collisions have occurred and beacons

detected. It is important to remember that beacons here are objects to be discovered in the

map and are not used for navigation by the robots. Originally, the world modeler was simply

implemented as a collision detector, moving the robot in small increments when prompted

by the event handler and informing the event handler of collisions, leaving the event handler

to determine when the full distance of a trajectory td had been reached. However, in order

to be more compatible with the minifactory implementation, the world modeler was altered

so that it now simulates an entire trajectory each time it is called, although if a new beacon

is detected during a trajectory, the modeler immediately returns that information to the

event handler. The simulation (without sliding) therefore operates as follows:

� The event handler tells the world modeler the trajectory direction t� 2 fN;S;E;Wg

and maximum distance td.

� In the world modeler:

{ While distance traveled < td:

� Calculate the next position for the robot pn = p + Æd, where Æd is in the

direction t� with length from a normal distribution about a nominal step

size.

40 CHAPTER 2. SINGLE-ROBOT COVERAGE

� If pn is in collision with a wall, return \wall collision", else set p = pn.

� If a beacon is detected, return \beacon at (bx; by)"

{ If this point is reached, td has been traveled without event, return \no collision".

� The event handler then:

{ For a beacon detection, add the beacon to the list B and continue the trajectory.

{ For \no collision" or \wall collision," update C as described in Sec. 2.1.3, then

call the map interpreter to generate a new trajectory.

Within this framework, if sliding motions need to be simulated, they can be (and have

been) approximated by adding a step at the end of the while loop of the world modeler that

reads:

� If t� 6= ;, calculate p� = p + Æt�. If p� is not in collision, set p = p� and

return \no collision".

The minifactory version of CCR uses the exact same event handler (and map interpreter)

in both instances, so that instead of invoking the world modeler, it simply submits a tra-

jectory to a piece of interface code as described in Sec. 2.3.4 (which may or may not use

sliding motions). The interface code in turn commands the robot to move in the appropriate

direction, and is designed to return the same values for collision and trajectory completion

as the world modeler, so that the remainder of the event handler can remain unchanged.

2.3.1 Wall-following capabilities

One important di�erence between the pure algorithm described and proven above and the

simulation (and the original minifactory instantiation) is that CCR as described above uses

sliding motions in which the robot maintains contact with a wall while moving parallel to

the wall. This type of control can be implemented in various ways, most commonly using a

technique well-known as hybrid force/position control, originally proposed by Raibert and

Craig [49], in which certain axes are force controlled while others are position controlled. In

some sense the courier is an excellent application for these techniques, since the force control

axis (i.e. maintaining a speci�c contact force with the boundary) and the position control

axis (i.e. following a trajectory along the boundary) are perfectly decoupled with respect to

the courier's actuators. The couriers do not have extrinsic force sensing, but an observer

has been implemented which provides (among other things) a reasonable estimate of the

2.3. IMPLEMENTATION 41

disturbance force on the courier, and this value could be used to implement force control. To

implement sliding motions, however, a slightly di�erent type of control from the traditional

hybrid control, termed a \dynamic force controller" was eventually developed on the couriers

by Arthur Quaid for use during exploration [50]. In this controller, both translational axes

are force controlled based on the estimated disturbance forces with arti�cial damping added

to limit free-space velocities.

At the time of the original minifactory implementation, however, a controller that could

generate sliding motions was not available. It is also the case that the use of such control

requires the obstacle boundaries to be very smooth, as surface roughness and friction can

easily cause large disturbances in the direction of motion and signal an internal corner when

none is present3. In addition, the world modeler of the simulation was originally made

without the ability to model such a control strategy. Therefore, the original implementation

replaced the sliding motions with interleaved small motions along the boundary (where col-

lision is possible but not expected) and small motions toward the boundary (where collision

is generally expected).

In order to generate these interleaved motions, the map interpreter of the version of

CCR implemented therefore used slightly di�erent versions of two rules, to wit:

3. If Cc has a side edge at a known position but whose intervals do not span the edge,

go to the nearest unknown y location along that edge and move toward the edge.

5. [Seed-sowing] If Cc is not complete, for the nearest unknown side, move to a point Æk

past the edge of Ccn;side , bump the nearby
oor or ceiling if less than w beyond the

last strip, otherwise start a new strip by moving in �y.

In theory, such interleaved small moves approach the behavior of the continuous hybrid

control as the length of the parallel motion (Æk) approaches zero. In practice, in order for

the robot to make progress along the edge, a reasonably small distance is chosen for Æk. The

proof will then still apply, but will not guarantee to �nd all gaps smaller (in con�guration

space) than Æk. In the context of the FSM, the states from which sliding motions are

generated by the map interpreter become pairs of states with transitions back and forth

between them. For example, motion � becomes two separate motions as shown in Fig. 2.16,

with the transitions representing discovery of an interesting point rearranged appropriately.

3The platens under development for the minifactory will have hard high molecular weight plastic bumpers

along their edges which simple experiments indicate will almost certainly allow the courier to slide along

them while maintaining contact.

42 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.16: The states and transitions corresponding to state A1 (as shown in Fig. 2.11)

and motion � in the absence of hybrid force/position control.

The proof still applies (with the caveat about small gaps), since each traversal of this cycle

increases the minimum area of the cell by a distance Æk, and so after w=Æk traversals of this

loop (barring the discovery of an interesting point) the robot will reach a point at which

motion � will be appropriate. Similar arguments hold for motion Æ as well as the exploration

of a wall lying on the side of a cell (the only type of sliding motion), in which the length of

the explored portion of the edge increases by Æk after each pair of interleaved motions, so

that the edge will eventually be completely explored.

2.3.2 Position uncertainty

Another important di�erence between the pure algorithm and its implementation, and one

which cannot be so easily incorporated into the proof, is that the simulation incorporates

small amounts of non-cumulative position error. This was originally an artifact of the simple

world model | since the world modeler operates by taking small steps and returning \yes"

or \no" for each step, the position seen by the event handler at collision is not the true

location of the wall, but can be o� by as much as the step size. However, since this type

of error is very similar to that produced by the courier, it was decided to retain it in the

simulation. The simulation of CCR therefore assumes that the position at any collision has

a random error of at most � in the direction of collision, with the error independent of any

other measurement. The value of � for the current implementation is set to one simulation

\unit" in systems where the typical robot width w was 20 units.

This type of position error has both quantitative and qualitative e�ects on the per-

formance of coverage. First of all, as might be expected, collisions with known edges are

considered expected (i.e. not representative of an interesting point) if p is within 2� of the

assumed value of the edge. The value 2� is used since the wall is entered into C at the

2.3. IMPLEMENTATION 43

(a) (b)

Figure 2.17: Problems arising from small position errors: (a) cells on two sides of an obstacle

may not abut or may overlap, and (b) a small jog in the
oor of a cell may indicate an

interesting point in a way not previously accounted for.

location of initial contact, which may be o� by � from the true location, and subsequent

contact may be o� by � in the opposite direction. Another concession to position error is

that when moving from one cell to another, a bu�er of at least � must be left between the

robot and the cell edges to ensure safe passage, since the actual position of the wall may be

closer than the position recorded in C.

In addition, in certain situations, structural problems appear in C that would not be

encountered with perfect sensing. For example, if the robot travels around an obstacle as

shown in Fig. 2.17a, the cell along the �nal edge (C3) may not adjoin the side of C0, or

alternately, the two cells may overlap. In either of these cases, the cells' edges must be

aligned in order for p to always be in one and only one cell. Similarly, when the robot �nds

the top corner of the obstacle at the moment pictured in Fig. 2.17a, it will exit C3 but

may be just below, rather than in, C0, and this must be noticed, extending C0 rather than

adding a new placeholder adjacent to C3 just below C0.

Even more serious is when additional FSM states and transitions arise due to position

uncertainty. The only case in which this occurs arises from a small jog in a horizontal

wall, as shown in Fig. 2.17b. The seed-sowing strip on the right is not considered to be

signi�cantly shorter than the one previous, but when doubling back over the
oor of the

cell with motions
 and Æ, an internal corner is encountered. If the right side of this cell

is already known, this is an unexpected collision with a horizontal wall, which in a system

with perfect sensing is impossible. In this case, the event handler must split the cell at px

into two cells, each of which get half the information of the original cell. The two new cells

share a mutual interval over the height of the (slightly) shorter cell, and the cell on the

robot's side of the short wall will be slightly taller than the other cell. In addition, each cell

gets the appropriate intervals and covered width from the original cell.

44 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment size 5w � 5w 10w � 10w 20w � 20w

Average cf 2.4828 1.7098 1.3674

Std. deviation 0.1300 0.0636 0.0219

Table 2.1: Performance of CCR in various square environments.

The incorporation of these algorithmic details into the proof of correctness (and the

algorithm to which the proof applies) is possible | the possible transitions in the FSM

become greater in number due to the position errors, and the number of states increases

as well. However, this will require the complete enumerations of all ways in which position

uncertainty can a�ect the outcome of motions under CCR. As this has not yet been done,

there is no guarantee that the current implementation of CCR will succeed in all instances,

although its reliability in simulation has been seen to be quite high. Further discussion of

the expansion of the proof is given in Sec. 4.4.3.

2.3.3 Performance measurements

The simulation of CCR as described above was run a number of times in a variety of

environments to empirically determine correctness as well as eÆciency, and to gain insights

into the types of environments that lead to more or less eÆcient behavior. The metric used

to measure eÆciency is the coverage factor (cf), which is de�ned as:

cf =
d� w

Area(C)
;

where d is the total distance traveled and w the robot width. This measures the average

number of times each point in C was passed over by the robot. Note that for a given

environment, cf is proportional to distance traveled, which in turn is approximately pro-

portional to time spent. The optimum value of cf = 1 can only be obtained given complete

knowledge of the environment and all cell widths an exact integer multiple of w.

Under CCR, even pure seed-sowing takes a little more time than might be necessary,

as the
oors and ceilings of each cell are partially double-covered (by motions
 and Æ) in

order to discover any gaps. As the cells get smaller (i.e. a more cluttered environment),

this e�ect gets proportionally worse. In addition, since cells will not in general be covered

exactly by an integer number of strips, the exploration of each side edge will cover an area

less than the width of the robot. This e�ect also gets worse in cluttered environments,

since such environments have more cells for a given area (a rectangular environment will

2.3. IMPLEMENTATION 45

(a) (b)

Figure 2.18: Environments used to test CCR. The black square in each is the size of the

robot.

be \decomposed" into a single cell). These e�ects were shown empirically in experiments

described in Table 2.1. To collect these data, CCR was run 50 times (with a random initial

location each time) in each of three simply connected square environments. The sizes of the

squares ranged from 5 times the robot's width w to 20w. In the larger environments, the

non-productive motions have smaller impact, as does the variation due to changing initial

conditions.

CCR was also run on a variety of more interesting (randomly generated) environments

to test its robustness and correct implementation. These environments were generated by

populating an open square of dimension � 20w�20w with between three and eight rect-

angular obstacles. Each obstacle was given a random height and width between w=20 and

10w (recall that w=20 represented a \unit" in the dimensions of the simulation), and obsta-

cles were permitted to overlap to generate more interesting shapes. Results from 50 such

random environments are given in the �rst column of Table 2.2 | the standard deviation

statistic is perhaps less meaningful than for a single environment, but is an indication of the

variability of CCR's eÆciency over a range of environments. In addition, two environments

were selected for CCR to be run in repeatedly. These are shown in Fig. 2.18. The environ-

ment of Fig. 2.18a was originally generated at random and selected for further testing as

being representative of \average" complexity while having some interesting geometric fea-

tures, while that of Fig. 2.18b was speci�cally designed to have many degeneracies (i.e. with

many aligned obstacle edges) as well as many small cells to induce extreme ineÆciency. The

results generally bear out these hypotheses, although the \average" environment actually

was covered somewhat more eÆciently than the average of the random environments. This

was most likely due to the large area of free space at the top and left accounting for a large

46 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment Random Fig. 2.18a Fig. 2.18b

Average cf 2.3074 1.9864 3.557

Std. deviation 0.3292 0.0860 0.1443

Table 2.2: Performance of CCR in the environments of Fig. 2.18.

fraction of the overall area.

2.3.4 Minifactory implementation

To implement CCR on a minifactory courier, a small amount of interface code was written

with the assistance of Arthur Quaid (who also provided all of the low-level control code for

the courier). For the �rst set of experiments, the available primitives were a simple straight-

line motion and a \bump"-guarded straight-line motion, both using open-loop trajectory

following. The guarded move was implemented by watching the di�erence between the

open-loop set point during motion and the sensed position (from the magnetic position

sensor) | when the di�erence between the positions went beyond a threshold of 200 �m, a

collision was assumed to have occurred. In practice, certain types of disturbances caused by

the courier's tether combined with the inherent open-loop tracking error occasionally caused

this threshold to be exceeded when a collision had not occurred. However, this was overcome

by simply restarting after a collision and requiring a second collision at the same location in

order to report collision back to CCR. The second set of experiments were performed under

closed-loop control, both with and without the sliding control described in Sec. 2.3.1 above.

The closed-loop control was implemented using the dynamic force controllers alone and in

combination with standard PD control. For example, to perform a straight line \bump"

guarded motion under closed-loop control, the courier uses the dynamic force controller in

the direction of motion to induce an approximately constant velocity in that direction and

uses PD control in the perpendicular direction to keep it on course. Further details of the

controller implementation as well as the remainder of the low-level courier control code can

be found in [50].

For the �rst experiments, two obstacles were placed on the platen of the prototype mini-

factory, as shown in Fig. 2.19a. Initially it was considered infeasible to add a �xed obstacle

that was not attached to the edge of the platen due to the impressive force generation (60

N) of the couriers. However, a small planar motor (with its air bearing deactivated and

its tether removed) had suÆcient attraction to the platen to form a useful island as shown

2.3. IMPLEMENTATION 47

(a) (b)

Figure 2.19: Environments used for CCR testing, consisting of half of a commercial platen

with additional obstacles. The (tethered) courier performing CCR is included for scale.

in the environment in Fig. 2.19b. It should be noted that the production version couriers

will have a low \skirt" that gives them a rectangular footprint while also protecting the

connector and optical coordination sensor from collisions. However, since this is not the

case for the current couriers, a custom skirt was added to the small courier to protect the

connectors of both motors and provide rectilinearity to the obstacle.

Another factor in the setup of the test environments was that although the boundaries

and obstacles were very straight with respect to the platen axes, for most of the \walls," when

sliding was not available, their compliance required that each collision be followed by a short

(1 mm) recoil motion. Before the recoil, the courier would be compressing the boundary,

and would be unable to freely move parallel to the boundary. While not an issue for this

setup, the recoil would also be important for slightly angled boundaries and obstacle edges.

Without the recoil in this case, a motion parallel to the boundary could result in a collision,

indicating a corner where no actual corner was present, causing the coverage algorithm to

generate a series of zero-width cells and leading to potential confusion. This is another area

where the addition of sliding motions is bene�cial, as a force can be maintained with the

boundary and so moderate amounts of compliance would be absorbed by the controller,

although care must be taken to keep the courier from rotating too far while maintaining

contact.

Another issue with real-world implementation is that of scale. In the simulation, the

48 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment Empty platen Fig. 2.19a Fig. 2.19b

Orientation std. rot. std. rot. std rot.

Number of Runs 10 10 10 10 10 10

Average cf 1.69 1.72 2.99 2.68 2.92 3.05

Std. deviation 0.13 0.08 0.27 0.26 0.23 0.30

Table 2.3: Performance of CCR on the courier in the environments of Fig. 2.19. \Standard"

orientation is as shown in Fig. 2.19 and \rotated" orientation is 90Æ counter-clockwise.

pixel was used as a convenient geometric unit, with the robot 20 pixels wide and a boundary

tolerance � of one pixel. For CCR on the courier, it was simplest to retain the equivalence

between the units of C and �, and scale the robot width w (internal to CCR) accordingly.

Initially, the unit selected was 1 mm, but due to the use of interleaved motions for edge

exploration and the prior selection of Æk as one unit, this caused CCR to explore edges very

slowly, as the parallel motions were each 1 mm long. Units of cm were therefore chosen for

CCR, ensuring at least that all gaps of w+(1 cm) in the environment would be discovered.

For the experiments that used sliding motions, Æk was not an issue, but the way external

corners were handled at the controller level became important. When a sliding motion ends

at an external corner, the robot only travels a short distance around the corner due to the

controller implementation and the need for robust behavior. However, it must be far enough

beyond the corner (in CCR units) to recognize that it is beyond the wall. A unit size of 2

mm was therefore selected for these experiments, and proved to satisfy both requirements.

It should be noted that with sliding motions, the choice of unit size does not change the

basic behavior of the robot, nor is the coverage factor a�ected, since w and total distance

are each scaled by the unit size, as are the dimensions of C.

Once the low-level processes were worked out and the CCR code was integrated with the

courier control code, the courier was set loose in the environments of Fig. 2.19 as well as an

empty portion of the platen of dimension 69�97 cm (4.6�6.5w). Various initial positions

were used as well as both feasible orientations over a series of experiments. A maximum

velocity of 70 mm/s was found to be the highest acceptable in open-loop mode in light of

potential corner-on-corner collisions and the elasticity of some boundaries. The results of

these experiments are shown in Table 2.3. One item to note is that in fact, the environments

with added obstacles are fairly cluttered compared to most seen in simulation | the courier

is 15 cm wide, while the obstacles and spaces between them had dimensions between 10 cm

and 50 cm | so that the coverage factors tended to be fairly high compared to those seen in

2.3. IMPLEMENTATION 49

(a) (b)

Figure 2.20: Two di�erent decompositions created in the environment of Fig. 2.19a

simulation. In addition, these experiments show some of the potential e�ects of tolerances

on the coverage process. For the environment of Fig. 2.19a, for example, the platen edge at

the upper left of the photograph contains a small jog (on the order of 2 mm) that may or

may not appear as a corner in the environment depending on the orientation of the courier

and the direction in which its edge is explored. Two decompositions for this environment

that show this e�ect are shown in Fig. 2.20 | the decomposition in part b of the �gure

has an additional thin cell on the right side. Similar e�ects were found for the environment

of Fig. 2.19b. In addition, this latter environment showed the successful creation of a non-

simply connected cell decomposition, in which (for some initial conditions) a cell boundary

is explored from each side at a di�erent time (as depicted in Fig. 2.17a) and the two cells

must be properly attached to each other.

The next set of experiments was undertaken once closed-loop control became available

and easily integrated with the existing CCR implementation. It was immediately realized

that the bene�ts to be realized were not in terms of the coverage factor metric, but rather

in elapsed time. This is simply because CCR will produce the same trajectories whether

or not the robot is using closed-loop control (if sliding is not available; if sliding is used,

the same gross behavior will still be generated). However, the maximum speed at which

the courier can recover from a corner-on-corner collision is much higher under closed-loop

control | as high as 200 mm/s or greater (with almost complete reliability) compared to

60-70 mm/s when running open-loop. The greater improvement to the elapsed time was

that sliding proved (as expected) to be much faster than even closed-loop bumping with

the same maximum velocity, as the courier was not required to stop and bump against the

50 CHAPTER 2. SINGLE-ROBOT COVERAGE

Control type Open-loop Closed-loop Closed-loop Closed-loop Closed-loop

Sliding? No No No Yes Yes

vmax [mm/s] 70 70 250 70 250

Empty platen (p1) 310 281 230 115 46

Empty platen (p2) 318 295 234 140 53

Fig. 2.19a (p1) 409 399 291 224 91

Fig. 2.19a (p2) 365 341 250 201 79

Table 2.4: Elapsed time (in seconds) for CCR under various control methods.

edge once per centimeter. It is important to note that the speci�ed maximum velocity for

an open-loop trajectory will always be achieved, while in the closed-loop case, the use of

the dynamic force controller means that the maximum velocity will only be achieved in the

absence of disturbance forces, and in the experiments presented here, most trajectories ran

at 70-80% of the given vmax.

To quantify these speed improvements, CCR was run using all three types of control

from the same two starting positions in each of two di�erent environments. The results of

these experiments are given in Table 2.4. From these results, it can be seen that there is

actually some speed improvement simply due to the use of closed-loop control rather than

open-loop, even at the same maximum velocity vmax (and using the same trajectories). This

is presumed to be due to the closed-loop collision detection being more responsive than the

open-loop version. However, for the closed-loop bumping control, an increase in maximum

velocity did not lead to great improvement, as the majority of the time was spent in small

motions along the edges of the platen, during which the courier was required to stop and

change direction repeatedly and could not achieve the speci�ed vmax. On the other hand,

not only was sliding seen to be of great improvement even at the slower speed, but it received

much greater relative bene�t from the higher speed capability.

Chapter 3

Cooperative coverage

Once an algorithm exists for sensor-based coverage for a single robot in a speci�c system,

it becomes possible to discuss performing this task cooperatively to increase the eÆciency

with which coverage is performed. As mentioned earlier, while any type of cooperation

between robots has the potential to decrease the time necessary to complete a task, peer-

to-peer cooperation can also make the task performance more robust by eliminating the

dependence on a central controller, thereby allowing the task to continue despite individual

robot failures. For the cooperative coverage task, we have therefore chosen to implement

an algorithm that will run independently on each robot, eliminating the need for a central

controller. This makes higher-level strategic decisions more diÆcult to implement, since

the robots either need to independently make the same decision or negotiate to determine

a strategy. In our case, we have chosen to have each robot run the same algorithm and

make independent decisions in such a way that complete coverage is still guaranteed while

eÆciency is aided as much as is straightforward to implement.

Figure 3.1: A schematic version of the concept behind DCR.

51

52 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b)

Figure 3.2: Two decompositions of the same rectilinear environment: (a) the unique sweep-

invariant decomposition and (b) a possible generalized rectilinear decomposition.

The algorithm developed, DCR (Distributed Coverage of Rectilinear environments), is

based on CCR, and makes use of the reactive nature of CCR to not only provide cooperation

and therefore increased eÆciency, but also a straightforward extension of the proof of CCR

to the multiple-robot case. The basic concept behind DCR comes from the notion that the

internal state of CCR, while not explicit, can be derived exclusively fromC and p. Therefore,

if C can be altered in response to other robots' data, it should be possible to cause the robot

to avoid parts of the environment covered by its colleagues while still using the same (or

nearly the same) underlying coverage algorithm. This idea is shown schematically in Fig.

3.1. The key is that alterations to C cannot be made arbitrarily, since not all of the in�nite-

dimensional space of (C; p) pairs is represented in the FSM presented in Sec. 2.2. Rather, C

must be altered in a well-de�ned way, and the coverage algorithm slightly modi�ed (thereby

expanding the states of the FSM), so as to retain the guarantee of complete coverage for

each robot running DCR. A summary of DCR was �rst presented in [51].

3.1 Cellular decompositions under DCR

One of the most important di�erences between sensor-based coverage under CCR and co-

operative coverage under DCR is that the decompositions of the environment that will be

created under DCR will not necessarily fall into the same class (that of oriented rectilinear

decompositions, or ORDs). The way the decompositions are created is described in detail in

Sec. 3.2.3 below, but a description of the class of decompositions in which DCR will operate

will hopefully make the following algorithm description more comprehensible.

Clearly, for any non-trivial rectilinear environment, exactly two possible ORDs exist (one

3.2. COMPONENTS OF DCR 53

for each possible axis orientation)1. Overlaying the boundaries of these two decompositions

gives rise to a decomposition referred to here as the sweep-invariant decomposition, or SID,

an example of which is given in Fig. 3.2a. The SID of an environment is therefore unique, and

can be created from a given environment by extending all boundary and obstacle edges until

a perpendicular wall is reached, with these extensions representing all cell boundaries. This

decomposition seems promising for use by cooperating robots in rectilinear environments.

However, in the SID, a cell's extent may be de�ned by an arbitrarily distant wall segment,

and it is therefore infeasible to create this decomposition in an incremental way.

The SID does, however, form the basis of the class of decompositions developed under

DCR. When running DCR, a robot will incrementally construct a decomposition of the

environment that is of a class we will call generalized rectilinear decompositions (GRDs). A

GRD C can be de�ned as consisting of a set of nonoverlapping cells fC0 : : : Cn; Ci \ Cj =

; 8 i 6= jg, each of which is a rectangular superset of cells of the SID of the environment.

An example of a GRD is shown in Fig. 3.2b. It is important to note that there are many

possible GRDs for a given environment, and in fact two robots cooperating to cover their

shared environment may create di�erent GRDs, however, the number of possible GRDs for

a given environment is �nite and the number of cells in any GRD is also �nite. In addition,

GRD cells will contain intervals that represent neighbor relationships like those in an ORD,

but a GRD cell can have cell or placeholder neighbors on all four edges rather than just the

two side edges. A GRD is valid if the cells are rectangular supersets of SID cells and all

cells have intervals that point to the actual entity adjacent to the cell at that location.

3.2 Components of DCR

To generate cooperative coverage as outlined above, in which the cell decomposition is al-

tered while coverage is performed, the algorithm DCR is built out of three components. The

�rst is called CCRM , which is built from CCR with some modi�cations as described below

(the \M" subscript stands for \modi�ed" and/or \multiple robots"). The feature handler

watches C as it develops and communicates with other robots' feature handlers to develop

colleague relationships and share data as coverage progresses. Under DCR, two robots are

considered colleagues when they have discovered the relative geometric transform between

their individual decompositions. Finally, the overseer induces cooperation by taking incom-

ing data from known colleagues and integrating these data into C during the performance of

1A simple rectangular environment will consist of a single cell regardless of the orientation of the robot.

54 CHAPTER 3. COOPERATIVE COVERAGE

Figure 3.3: A schematic representation of the components of DCR and the types of data

transferred between them.

coverage. A schematic representing the way the three components interact with each other

as well as with other robots also running DCR is shown in Fig. 3.3.

3.2.1 CCRM

As mentioned previously, the aim of this work is to produce complete cooperative coverage by

decoupling the cooperation process from the coverage process. CCRM is therefore primarily

just CCR. However, some additions must be made due to cooperation that both allow

coverage to continue and allow the proof of CCRM to follow directly from that of CCR as

shown in Sec. 3.3. It should be pointed out that these are indeed strictly additions, not

alterations, so CCRM (as a component of DCR or alone) will work for a robot performing

coverage alone, and behave identically to CCR.

First of all, due to the expanded class of decompositions, the seed-sowing process must

be altered to take in to account vertically adjacent cells (such as in the GRD in Fig. 3.2b),

geometry that is never present in an ORD. When an incomplete cell has another cell along

its
oor or ceiling, the seed-sowing strips must be ended arti�cially at the cell boundary,

rather than naturally by a collision. This is done in CCRM through the use of exploration

boundaries. Exploration boundaries are virtual boundaries placed by the overseer at the

time of cooperation, and are located at the
oor and ceiling of each complete cell in a

GRD wherever an environmental boundary is not present. The behavior of an exploration

boundary is such that a collision is e�ected when the robot tries to traverse it if and only

if the robot is in an incomplete cell. This induces the correct behavior for the seed-sowing

case, as shown in Fig. 3.4a, but also allows the robot to move through cells freely once the

3.2. COMPONENTS OF DCR 55

(a) (b)

Figure 3.4: The e�ects of an exploration boundary (dash-dot line) when the robot is in (a)

an incomplete cell and (b) a complete cell.

current cell has been completed, as seen in Fig. 3.4b, maintaining the correctness of the path

planning process. The implementation of exploration boundaries depends on the system in

question. Two di�erent methods are discussed in the context of DCR implementation in

Sec. 3.4.

This ability to perform seed-sowing in cells with vertical neighbors points out (and gives

rise to) an important property of cells in a GRD under construction | that each cell will

always have at least two attached edges that are on opposite sides. An attached edge is one

that is entirely adjacent to walls and/or complete cells rather than placeholders. This is

true because seed-sowing strips in a cell being explored must end at a wall or a complete

cell (because of the exploration boundaries). In addition, when a cell is transferred from one

robot to another, this property of attached edges is retained, as shown during the description

of the overseer below. This property will also be used in the correctness proof below.

In addition, seed-sowing must not only take into account vertically adjacent cells, but

interval creation and maintenance as well. Under CCR, intervals are built on the
oors and

ceilings of each cell, but always point to walls for the known length of the edge, while in a

GRD, a cell may have one or more cells or placeholders above or below it. CCRM therefore

must have the capability to create and maintain all types of
oor and ceiling intervals. Due

to the oriented nature of the algorithm (i.e. seed-sowing will always be done with y-aligned

strips), the
oor and ceiling intervals are not dealt with quite the same as the side intervals.

Side edges are explored all at once, directed by Rule 3 of the map interpreter, while
oors

and ceilings will be explored piecemeal as seed-sowing progresses.

To maintain
oor and ceiling intervals, CCRM includes a new function that is called

after each contact with the
oor or ceiling of the current cell Cc. This function, which

is described in more detail in Appendix A.3, �rst checks to see which cell (if any) Co lies

56 CHAPTER 3. COOPERATIVE COVERAGE

Figure 3.5: A typical example of the maintenance of intervals between vertically adjacent

cells.

adjacent to the
oor or ceiling just hit. This check is done by testing each cell in C to see

whether it contains a point just beyond p outside the current cell. If there is no other cell

present (Co = ;), a wall interval is created or extended just as for a side wall. If another cell

is present, an interval is extended or created in Cc as appropriate, but the corresponding

interval in Co must also be updated. This will most often follow the process portrayed

in Fig. 3.5, which involves extending the interval in Co to match the one in Cc, but also

shrinking a placeholder neighboring Co. The portion of the
oor of Co that is now known to

point to Cc was not previously explored, and so there must have been a placeholder there.

This placeholder can be found as Co's neighbor and shrunk, and will eventually be deleted

when it reaches zero length.

The event handler must also correctly update horizontal intervals during the detection

and localization of interesting points. For example, when an interesting point is detected as

in Fig. 2.6, the interval on the
oor of C0 (which may or may not point to another cell) must

be split and shared between C0 and C1. Even when the interesting point is �rst discovered

and the cell boundary has not been localized, the disposition of the cell
oor must be known

as far right as px. Then, once the boundary has been localized, the ceiling intervals in the

cell across the
oor of C0 and C1 (if such a cell exists) are updated.

Finally, since placeholders can now be horizontal as well as vertical, the map interpreter

must be able to instantiate new incomplete cells from these horizontal placeholders that can

be entered and covered correctly. To do this, rather than building a cell that corresponds to

the entire length of the placeholder, the map interpreter �rst directs the robot to one end of

the placeholder, then builds a cell with zero minimumwidth above (or below, as appropriate)

the end of the placeholder. The robot will then enter this new cell and explore its near edge

before beginning seed-sowing across the width of the placeholder. The instantiation is done

in this way because a single horizontal placeholder may correspond to multiple cells in the

3.2. COMPONENTS OF DCR 57

eventual GRD, and so starting with a thin cell and increasing its width one strip at a time

will allow the correct discovery of all interesting points and the correct development of C.

The details of these updates to the map interpreter are also given in Appendix A.3.

3.2.2 Feature Handler

The feature handler, by its very nature, is designed independently of the other two compo-

nents of DCR. It can be thought of as a \black box" that takes C and the list of beacons B

and produces colleague relationships for use by the overseer. A functional feature handler

has been developed for use in the current implementation of DCR, and could be used as a

template for di�erent feature handlers in other systems, but any algorithm that performs

this function (and two additional small functions described below) could be used in DCR.

In general, the feature handlers in each robot will communicate values of derived features in

an attempt to discover overlap between the maps. A derived feature is a number (or perhaps

an ordered tuple) that is generated in a consistent way from the data in C. Examples of

derived features are distance between unlabeled beacons (as used in the current system and

described below), lengths of boundary segments, beacon labels, distances from each beacon

to the nearest boundary, etc. Ideally, a derived feature is chosen for a system such that it

will be unique throughout the environment | this would allow two robots with a common

derived feature to immediately become colleagues. In general, this may not be possible,

but if a derived feature is chosen so as to generate few false matches, and the feature han-

dlers have a way to check potential matches (with additional data from C) before creating

colleague relationships, it should suÆce.

It should be noted that the formulation of the overseer and proof of DCR do not allow

for removal of area from C if a colleague relationship is later rescinded. Therefore, it is

important to be conservative when generating colleague relationships. The current system

uses distances between pairs of beacons as the basic derived feature, but does not make

a �nal judgment about colleague relationship until a third beacon is found to be common

to the two robots' maps. For the particular system simulated and the sensor tolerances

assumed, this has yet to produce a false match in hundreds of simulations.

The feature handler currently in use makes use of only the beacons in the map rather

than the cells themselves. It was originally developed this way with an eye toward the

minifactory, in which the cells and environment boundaries will be de�ned by the platen

layout, and will therefore all look much the same. The derived feature used is simply the

distance between any pair of beacons, and so each robot's feature handler keeps a list D

58 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b) (c) (d)

Figure 3.6: If (a) robot RA and (b) robot RB each have a pair of beacons at the same

distance d, their relative transform can take two forms: (c) the cis-form and (d) the trans-

form. Angles �t and �t are used to calculate the transforms.

of distances that have been reported by other robots, with each distance paired with the

robot that reported it. Then, for every beacon Bi discovered by a robot, the feature handler

performs the following tasks:

� Report the location of Bi (in its own coordinate system) to all colleagues.

� For each previous beacon Bj 2 fB0 : : : Bi�1g:

{ Compute the distance dij between the new beacon Bi and Bj.

{ If dij matches (within a prespeci�ed tolerance) any distance already in D, con-

tact the robot responsible for that distance and compute relative transforms as

outlined below.

{ Otherwise, report dij to all other robots.

It is reasonable to expect that any feature handler would use much the same structure

regardless of the speci�c type of derived feature used, although this is not necessary for the

correctness of DCR. Other map matching methods that could be used by a feature handler

are discussed below.

Once a pair of beacons has been found to be common to two robots' lists of beacons, a

pair of potential transforms is computed. Since the line segment de�ned by the two beacons

is not directed (as it would be if the beacons were labeled), the pair could match with two

di�erent relative orientations. Here the two possibilities will be de�ned by one having the

two robots' origins on the same side of the line segment and the other with them on opposite

sides of the segment | this de�nition is then the same for each robot, so no negotiation or

prioritization of robots is necessary. The two transforms are called the trans-form (opposite

sides) and the cis-form (same side), as shown in Fig. 3.6, and are out of SE2.

To generate the two transforms (from the point of view of robot Ra; robot Rb will use

3.2. COMPONENTS OF DCR 59

the same process but with the opposite symbols) robot Ra uses its own two beacons Abt

(\tail") and Abh (\head") and the two beacons from the other robot, still in that robot's

coordinates, Bbt and
Bbh. For each robot, beacon bt is assumed to lie at a smaller polar

angle than bh (and therefore at the \tail" of the counterclockwise-oriented segment). The

angles �t and �t are calculated as �t = 6 Abh
Abt

A
O and �t = 6 Bbh

Bbt
B
O as shown in Fig.

3.6(a,b). The cis-form assumes that the each robot's bt corresponds to the same real-world

beacon, and therefore that �t and �t have the same origin and sign. To compute the cis-

form, the vector AdTB is de�ned as a unit vector from Bbt to OB , but in Ra's coordinates,

and angle A�TB is de�ned as the angle between Ra's x axis and AdTB. The rotation of Rb's

coordinate frame with respect to Ra's,
A�B, is then calculated as follows:

A�TB = A�T + � � �t + �t

A�B = A�TB + � � B�A (3.1)

The location of Rb's origin in Ra's coordinate system (AOB) is then calculated:

AdTB =

2
4 cos(A�TB)

sin(A�TB)

3
5 (3.2)

AOB = Abt + kBbtk
AdTB (3.3)

A�B and AOB can then be used to create a transformation matrix2. The trans-form is

computed in essentially the same way: simply reverse the roles of Bbt and
Bbh, which can

be accomplished by setting A�B = � �A �B instead of using (3.1) and completing the

computations in (3.2) and (3.3).

Once a pair of candidate transforms is found, they are �rst each checked to ensure that

the relative rotation is close to a multiple of �=2. It should be noted that if this is true for

one of the transforms, it will be true for the other, since the relative angles of the trans-

form and cis-form always di�er by exactly �. If this is true, the transforms are checked by

each robot to see if either or both results in the other robot's B being consistent with its

own C and B. In order to do this, RA gives its full list of beacons BA to RB (and vice

versa). RB then transforms each beacon in BA by each potential transform, and checks

to see if either resulting location lies within its own C
min

, where C
min

is de�ned as the

union of the minimum areas of all cells in C [Cmin=
S
i(Cin)]. If a transformed beacon

location is inside Cmin, the transform that was used to generate this location is invalid.

2In DCR, the matrix is not explicitly computed, but rather a vector [OXOY �] is maintained by each

robot for each of its colleagues

60 CHAPTER 3. COOPERATIVE COVERAGE

This is because if such a beacon existed, it would have already been discovered by RB

and would have necessarily already generated a potential match with RA. If one or both

transforms survive this process, they are still considered potentially correct. To con�rm one

or the other, a subsequent beacon must be found by either robot that matches a beacon in

the other robot's B. Alternately, if a new beacon discovered by one robot is transformed

into a location that ends up in the other robot's Cmin, this new beacon will invalidate

that transform. Therefore, after each robot �nishes a seed-sowing strip, since its Cmin

will increase in area, it will recheck the other robot's B to possibly invalidate one or both

transforms.

Even for this speci�c derived feature and related geometry, any of these double checks

could be eliminated or strengthened depending on the reliability and accuracy of the sensors

in the system. For example, if the accuracy of the beacon sensor is poor, false matches

between beacon distances will be more likely, and so a fourth matching beacon or some

other speci�ed piece of geometry could be required before the colleague relationship would

be con�rmed. Alternately, if the beacon sensor has some potential to miss a beacon, the

feature handler should not necessarily eliminate a transform if one robot's beacon appears

in the other's Cmin and not in its B.

For other systems, such as where beacons are sparse or nonexistent, or the robots' sensing

is less accurate, feature handlers based on other types of data could be used. For example,

image mosaicing generally takes two complete images and �nds overlaps between them.

Yi et al. [52] present a heuristic algorithm in which an initial estimate of relative pose is

not required, which is most attractive for cooperative coverage. Capel and Zisserman [53]

present an algorithm that explicitly ensures that the transforms around a loop of images will

be consistent. These algorithms (or ones derived from them) could be useful for applications

such as exploration of a warehouse where images of the
oor could be obtained with a camera

and used either to generate transforms or to reduce the uncertainty of a transform generated

through simpler means. On the other hand, an algorithm similar to one presented by

Janssen and Vossepoel [54] designed to mosaic overlapping line drawings could also be used

to generate colleague transforms based on relatively sparse boundary information discovered

by each robot.

In addition to this system-speci�c colleague generation procedure, every feature handler

has two mandatory jobs | colleague referral and data transmission to colleagues. Colleague

referral can occur in any team greater than two robots when one robot (e.g. RA) becomes

colleagues with two others (RB and RC) before RB and RC are themselves colleagues.

3.2. COMPONENTS OF DCR 61

Figure 3.7: An example of adding new area by the overseer, in which the initial cell decom-

position is depicted in Fig. 3.7a and the incoming cell Cnew in Fig. 3.7b. The dot in each

section of the �gure represents a common real-world point.

In such a case, it is the duty of RA's feature handler to deliver the relative transform

C
AT to RB and B

AT to RC , from which RB and RC can then each calculate their relative

transform. This allows RB and RC to share data directly, which is important to ensure

�nite communication among the team, as described in Sec. 4.2. If there is any potential

error in the relative transforms, simply chaining them together may not be the best option,

as discussed in Sec. 4.4.3, but it is certainly the most straightforward. The required data

transmission to colleagues simply involves the feature handler (as can be seen in Fig. 3.3)

delivering new cells to all colleagues immediately after completion to allow each robot to

maintain a consistent decomposition and to maximize eÆciency.

3.2.3 Overseer

The overseer has the task of incorporating all data from colleagues into C, a job complicated

by the requirement that C must remain admissible to CCRM . This has a few notable

implications | cells in a valid GRD must not overlap, so the overseer cannot simply add

the incoming cell as is, and the intervals between the incoming cell and existing cells must

be updated or added correctly. Also, any alteration of incomplete cells must be done such

that their resultant structure (for lack of a better phrase) \looks like" a cell that is being

explored by a robot working alone. In addition, to maximize eÆciency, all area represented

by the incoming cell should be added to C.

The addition of an incoming cell Cnew to C is therefore done in three stages. In the �rst

stage, zero or more new cells are added to C to account for the area of Cnew that is not

currently contained in complete cells in C. Then, for each cell added in the �rst step, the

incomplete cells in C are altered so that they do not overlap the added cell. Finally, the

intervals of each added cell are assigned to walls, existing cells or newly created placeholders.

62 CHAPTER 3. COOPERATIVE COVERAGE

An example of the action of the overseer is shown in Fig. 3.7.

The cell Cnew arrives described in the coordinate system of the sending robot, and so

it is �rst transformed into the local coordinate system using the transform provided by the

feature handler. This transformation includes the reassignment of the intervals to their

correct side (\left," \
oor," etc.), since the cell has been rotated, but the interval lists are

explicitly denoted by which side of the cell they lie along. Also at this time, all intervals

in Cnew that do not point to walls are modi�ed to point to \unidenti�ed free space" rather

than a speci�c cell or placeholder, since any such neighbor information in Cnew is meaningful

only to the robot that sent it.

To describe the overseer's actions that determine the area of cells to be added to C;Ccom

is de�ned as the set of all complete cells in C, and Cinc = C�Ccom. For the example in

Fig. 3.7a, Ccom = fC0; C1g and Cinc = fC2g. The overseer �rst compares Cnew with each

cell in Ccom, altering Cnew and calling itself recursively as follows:

� 8Ci 2 Ccom:

{ If Ci \ Cnew = ;, do nothing.

{ If Cnew is wider (larger in x) than Ci:

� If Cnew;right > Ci;right, make a copy of Cnew called Cx, set Cx;left = Ci;right,

and call the overseer with Cx.

� Similarly (not \else", since Cnew could extend past both sides of Ci) for

Cnew;left < Ci;left.

� If Cnew is also taller than Ci, make a copy of Cnew called Cx, set Cx;left =

Ci;left and Cx;right = Ci;right, then call the overseer with Cx.

{ Else if Cnew is taller than Ci, perform similar tests:

� If Cnew;ceil > Ci;ceil, make a copy of Cnew called Cx, set Cx;floor = Ci;ceil,

and call the overseer with Cx.

� Similarly for Cnew;floor < Ci;floor.

Each cell that survives this process unaltered (of which there may be zero, one, or many

for a single original cell Cnew) will consist of area not previously contained in Ccom. In the

example in Fig. 3.7, the area added to C to account for Cnew is a single cell shown in Fig.

3.7c which becomes C3 as shown in Fig. 3.7d. In addition, whether or not the area has been

divided, each cell will still have at least two attached edges | these cells will arrive with

attached edges (perhaps to other cells provided by the sender of Cnew), and are only altered

by shrinking Cnew to abut a complete cell, at which point they will be attached to that cell.

3.2. COMPONENTS OF DCR 63

(a) (b)

Figure 3.8: In order for a new cell to be narrower than an incomplete cell, (a) the original

new cell Cnew must be taller than the incomplete cell (C1) and therefore (b) the cell added

to C (C2) must be as tall as the incomplete cell.

At this point, the overseer checks for portions of the
oor and ceiling of Cnew that are not

walls, and creates exploration boundaries for them, adding them to a list EB that is used

by CCRM as described in Sec. 3.4.

Next, each new cell (which can themselves be called Cnew from this point) is intersected

with every cell Ci 2 Cinc. This intersection process is designed to retain the full size of

Cnew and eliminate any overlap with incomplete cells (shrinking or deleting the incomplete

cells as necessary). It should �rst be noted that since an incomplete cell must be attached

on its
oor and ceiling, Cnew cannot be taller than any Ci 2 Cinc | any complete cell that

de�nes the
oor or ceiling of Ci must have already reduced the size of Cnew as well. In

addition, if Cnew is narrower than Cin , the two cells must be the same height. As shown in

Fig. 3.8, the interesting point that de�nes Cnew must lie in the middle of the incomplete Ci

(C1 in the example), and therefore must be \hidden" from Ci by another complete cell (C0

in the example). The original Cnew must have originally been taller than Ci, so that the

cell added to C was limited by the complete cell and is therefore the same height as Ci.

The intersection of Cnew with the incomplete cells in C is therefore performed as follows

(note that it is not recursive, since Cnew is now �xed; also, after each \if" statement is an

implicit \else", so that only one of the operations listed will be performed):

� 8Ci 2 Cinc:

{ If Cix \ Cnew = ;, do nothing.

{ If Cin \Cnew = ;, reduce Cix so that it does not overlap Cnew.

{ If Cin [Cnew = Cnew, replace Ci with Cnew.

{ If Cnew is the same height as Ci (and since Cnew does not completely subsume

64 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b)

Figure 3.9: To determine the cell(s) adjacent to an interval i, a small distance Æi is added

to the two ends of the interval itop and ibot.

Ci), there must be a partial overlap in the x direction, so reduce Cin (on either

its left or right as appropriate) to abut Cnew.

{ Otherwise, there must be partial overlap in the y direction:

� If Cnew;ceil < Ci;ceil, replace Ci with a cell Cx, set Cx;floor = Cnew;ceil and

keep only placeholders attached to Cx, and create an interval in Cx to point

to Cnew.

� Similarly (this time not \else") for Cnew;floor > Ci;floor.

In the example, this process discovers that the new cell C3 partially overlaps C2 in y,

and creates two new shorter cells C4 and C5 to represent the portion of C2 outside of C3.

This results in the decomposition shown in Fig. 3.7d.

Once the areas of all cells have been determined, each unassigned interval i in Cnew is

given the correct neighbor(s). To do this, the overseer determines which cell's maximum

extent (if any) is across from the two ends of i. This is done (for the \top" end of i) by taking

the point itop and adding a small displacement Æi away from Cnew (e.g. a small amount in

+x for an interval on the right edge of Cnew, as shown in Fig. 3.9a | a second example is

shown in Fig. 3.9b). A cell Ctop is then determined by checking all cells Ci 2 C, and setting

Ctop = fCij(itop + Æi) 2 Cig. Since cells cannot overlap, Ctop will be at most a single cell.

A similar test is performed to determine Cbot, the cell that lies across from the bottom of i.

With these cells known, i is then assigned as follows:

� If Ctop = Cbot = ;, build a new placeholder Hm+1 equal in size to i and set i's neighbor

to Hm+1.

� If Ctop = Cbot 6= ;:

{ If Ctop is complete, set i's neighbor to Ctop. Also, �nd the interval in Ctop that

corresponds to i and connect it to Cnew.

3.3. CORRECTNESS PROOF 65

{ If Ctop is incomplete and i is horizontal, split i, connect it to Ctop for i \ Ctopn

and build a placeholder for i \ Ctopx .

{ If Ctop is incomplete and i is vertical, connect i to Ctop over the y extent of Ctopn

as long as Ctopn is within one robot width of i, build a placeholder otherwise.

If Ctop;n adjoins Cnew, �nd the corresponding interval in Ctop and connect it to

Cnew.

� If Ctop 6= Cbot, this should only occur if i is horizontal and Ctop and Cbot are each

either an incomplete cell or ;. In this case, split i at the boundary of Ctop and Cbot,

connecting the successor intervals where adjacent to Ctopn , Cbotn to those cells, and

build placeholders for the remainder(s).

3.3 Correctness Proof

The goal of a distributed coverage algorithm is primarily to produce coverage more eÆciently

than by a single robot alone. However, just as for CCR, while eÆciency is a concern in

the development and implementation of the algorithm, a guarantee of complete coverage

is of primary importance. In the case of DCR, what must be shown is that a team of

any number of robots operating in any shared �nite rectilinear environment will produce

complete coverage of that environment | that is, at least one robot will reach every point

in the environment. In addition, we will show that this ensures that each robot ends up

with a complete map of the environment to which it has registered itself.

The proof presented here makes use of the same separation of coverage and cooperation

that makes DCR feasible. First, it is proven that CCRM produces complete coverage in

the absence of cooperation. Since DCR for a single robot reduces to CCRM , this is also

a proof for DCR for a team size of one. It is then shown that any cooperation does not

interfere with the ability to produce complete coverage. In other words, CCRM will be able

to continue coverage after any type of cooperation and will not terminate until the team has

collectively covered the environment. These two statements together imply the correctness

of DCR as de�ned above.

Proposition 3.1 CCRM inherits the ability to completely cover any rectilinear environ-

ment from CCR and will continue coverage in an enterable GRD (as may be created by

cooperation).

The goal of this proposition is similar to that of Proposition 2.1, and is to show that

CCRM will continue coverage to completion in any GRD in the absence of cooperation.

66 CHAPTER 3. COOPERATIVE COVERAGE

However, since a GRD that is not an ORD can only be created through cooperation, we

instead say that CCRM will continue coverage in any GRD as created by cooperation if

there is no further cooperation. The concept of an enterable GRD is therefore de�ned as

a valid decomposition (non-overlapping cells with correct intervals) in which all incomplete

cells can be entered by the robot in a state represented in the FSM description of CCRM .

This proposition can be proven by �rst showing that the FSM that describes CCRM is

structurally identical to that of CCR, but in which each cell comes from a GRD rather than

an ORD. We then note that the structure of the current cell uniquely de�nes the state of

CCRM for the �rst �ve rules, so that if the current cell is not changed by cooperation, the

state will not immediately change due to cooperation. In addition, when the robot is in a

complete cell, the current cell cannot be altered by cooperation (by de�nition). From this

state (node X in the FSM), when an incomplete cell is reentered for coverage, (Cc; p) will

be in a state from which coverage will continue since the decomposition is enterable. Also,

any placeholders remaining in C will be correct as long as C is valid. Therefore, coverage

will be able to continue to completion.

We will now show that the FSM that represents the evolution of C under CCRM has the

same states as the FSM representation of CCR. For the states of seed-sowing, exploration

boundaries will cause seed-sowing to continue in any GRD as in an ORD, and the additions

to the event handler ensure that the intervals between the current cell and a vertically

adjacent neighbor will be maintained. This analysis assumes as in CCR that there are no

overlapping incomplete cells | proving that this is the case under DCR is more complicated

than under CCR, and is shown separately below in Proposition 3.1.1.

Once an interesting point is discovered, the current cell (and its neighbors) must be

updated and/or created correctly. For an interesting point discovery of Case I (as shown in

Fig. 2.5a), the changes to the area of the current cell are as in CCR. However, if another

cell lies across from the current cell's
oor, their mutual interval will be extended to the

new interesting point and the placeholder that had been at that location will be shrunk

to zero length and deleted from H. This deletion of the placeholder is unlike anything in

CCR, since under CCR all placeholders are vertical and are removed all at once, either when

turned in to a new cell or when cells are connected around an obstacle.

Interesting point discoveries of Case II can only happen in the way de�ned by CCR

and are handled exactly as in CCR. This is because if another cell Co was adjacent to the

oor of the current cell, Co would not be attached on its ceiling (since the current cell is

incomplete and adjacent to its ceiling) and so would have to be attached on its right side.

3.3. CORRECTNESS PROOF 67

(a) (b) (c)

Figure 3.10: The discovery of interesting points in a GRD when the current cell has a

vertically adjacent neighbor.

The robot could therefore not move past the current cell's
oor or ceiling, since it would

instead hit whatever Co was attached to. In addition, if another cell adjoins the ceiling of

the current cell in this case, it will be unchanged by this type of discovery, so the handling

of this interesting point is correct.

The remaining cases (III, IV, and V) of discovery of interesting points are similar to

each other in that the newly discovered wall or non-wall (the discovery which indicated an

interesting point) cannot be adjacent to another cell. However, in each of these cases, the

oor of the current cell could be adjacent to another cell Co, as shown for each case in Fig.

3.10. In these cases the intervals on the ceiling of Co need to be updated when the interesting

point is discovered. The event handler of CCRM will do this, although it should be noted

that this process does not immediately a�ect the FSM| the ensuing edge exploration in the

current cell will be identical regardless of the disposition of its vertically adjacent neighbors.

However, it is necessary to keep these intervals correct to maintain the validity of C. In all

of these cases, the intervals of the neighboring cell will now extend beyond the current cell.

In the case of Fig. 3.10b, a new cell will be created and the intervals along Co's ceiling can

be split between the current cell and the new cell. In the other two cases, the portion of

Co's ceiling that is beyond the �nal size of Cc will have to end up pointing to a placeholder,

but this is not as diÆcult as it may seem. Since the right side of Cc was unknown when

the interesting point was discovered, the portion of Co beyond the last strip shown must

still point to a placeholder. Therefore, when the boundary of Cc is set, this placeholder can

simply be resized to extend to the true right side of Cc.

Once in node F of the FSM, in which the side of a cell is being explored, the progress

of CCRM exactly matches that of CCR | since any cells encountered adjacent to the edge

68 CHAPTER 3. COOPERATIVE COVERAGE

being explored come from an enterable decomposition, the only entities that the robot will

encounter are walls, placeholders, or other cells that appear as in an ORD. Splitting cells,

which may involve a transition to node G, requires the splitting of intervals on the far side

of the cell (
oor or ceiling), but since the widths of both cells are known immediately at the

time of the split, this is easily handled correctly.

Finally, once CCRM reaches node X (completion of the current cell), it will, as in CCR,

look for any incomplete cell or placeholder in which to continue coverage. From this state,

the robot must still be able to plan to and reenter any incomplete cell, thus the de�nition

of enterable. As long as C is enterable, the robot can enter any incomplete cell and resume

coverage. In addition, creation of cells from placeholders must be slightly di�erent under

CCRM than CCR in order for the next state of coverage to be contained in nodes A or

C. For vertical placeholders, the cell is built in the same way as under CCR, although

it is necessary to create zero-length intervals at the
oor and ceiling (to walls or other

cells as appropriate) so that these intervals will be extended correctly during seed-sowing.

Horizontal placeholders are turned into cells as described in Sec. 3.2.1 above, which will also

allow correct interval extension while seed-sowing after �rst exploring an edge as directed by

node C (which need not change to accommodate this case). Planning paths to distant cells

will be done in the same way as under CCR, with the addition when looking for neighbors

of a cell to be successors in the path search, vertically adjacent neighbors are used as well.

However, the succession rules are still consistent from one planning instance to the next,

and so a consistent path will still be planned after each trajectory.

Finally, in order to complete the proof of this proposition, it must be assured that

there will be no cases in which seed-sowing will not be able to continue due to overlapping

incomplete cells. Because of the cooperation inherent in DCR, there may be an arbitrary

number of incomplete cells in a GRD during coverage. However, they will always have a

speci�c relative structure, as follows:

Proposition 3.1.1 No cell decomposition generated during DCR will contain overlapping

incomplete cells at the robot's current position.

First, we will say that an incomplete cell with a known left side \faces" right, and with

a known right side \faces" left. Then, since the event handler limits each cell's maximum

extent to lie outside of all other cells' minimum extents, two incomplete cells can then

overlap in only two qualitatively di�erent ways, as shown in Fig. 3.11. They may face each

other with a y point in common (Fig. 3.11a), or they may face the same way with a y point

3.3. CORRECTNESS PROOF 69

(a) (b)

Figure 3.11: The two ways in which incomplete cells might overlap.

in common, in which case the cell Cb being faced must have an unknown
oor or ceiling

(Fig. 3.11b). It will be shown that the former case will never occur under DCR, while the

latter will occur only when the robot is in Cb. In the latter case, the robot will extend Cbn

as it explores toward the unknown
oor/ceiling, at some point crossing over the edge of

Cax . When this occurs, the event handler will limit Cax to abut Cb so that the cells will no

longer overlap | since this is done after a move and before the map interpreter sees C, the

robot will never enter the overlap.

It now remains to be shown that two incomplete cells can never face each other, and that

if two incomplete cells face the same way and overlap, the robot must be in the one with the

unknown
oor or ceiling. First of all, without cooperation (see Proposition 2.1), there can

be at most two incomplete cells in C. In addition, incomplete cells can only be proliferated

beyond this number by splitting an incomplete cell (such as shown in Fig. 3.7). At the

time of the �rst such split, Cinc may have three structures: the cell C0 with two unknown

side edges, C0 and another cell Ci (which will not overlap C0, as guaranteed in Proposition

2.1), each with one known side, or a single incomplete cell Ci with one known side. The

last of these cases is the simplest to describe, and forms the basis for the other two. In

this case, which is the one taking place in Fig. 3.7 as well as in Fig. 3.12, the incomplete

cells created from splitting Ci (C2 and C3 in Fig. 3.12) cannot overlap in y, since the new

complete cell will be between them, and will have the same known side at the same location

as Ci. The robot will continue coverage in one of these cells, only creating additional cells

when discovering an interesting point of Case IV, in which the previous cell is immediately

completed, as shown as the creation of C4 in Fig. 3.12c. When such a successor cell is

created, it must therefore face the same direction as the originally split cell and will contain

70 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b) (c)

Figure 3.12: Generation and handling of multiple incomplete cells.

the robot's position upon creation. The robot will therefore remain in the last cell created

until it completes the cell or the cell is altered via cooperation.

If no further cooperation occurs after the incomplete cell is �rst split, the robot will

eventually complete one of the incomplete cells (or its successors, such as C4 in Fig. 3.12c)

and then return to another of the original incomplete cells and continue coverage in the same

fashion, ensuring that overlapping incomplete cells are not created. If, however, a successor

cell Cj is itself split by cooperation, it must still be shown that overlapping incomplete cells

are not created. Such a cell Cj can be split either before or after its ceiling is known (for

the orientation shown for C4 in Fig. 3.12c). Recalling that this cell was created through

the process of Fig. 2.6 (entering node C of the FSM above), if its ceiling is not yet known,

the robot must be exploring the known edge (i.e. still in node C), and therefore is at the

topmost point of Cjn . Any split of Cj will therefore keep the robot in the cell with unknown

ceiling, as required, and any other cell created will necessarily have a known ceiling and

cannot overlap in y with the other original incomplete cell. Therefore, none of these cells

can overlap regardless of the timing or type of cooperation.

In the case where C0 and another cell Ci are incomplete when one or both is split, these

two cells face away from each other (and can be considered to both face away from C0's

known side). Any incomplete cell created after the split (as in Fig. 3.12c) will also face away

from C0's known side, as it will lie in the area faced by the previously covered cell and face

away from the boundary with that cell. Therefore, the existence of an incomplete C0 does

not allow overlapping incomplete cells.

Finally, the case where C0 has two unknown sides can be considered as equivalent to

the previous case by thinking of C0 as two abutting incomplete cells (like C0 and C1) that

happen to be the same height. These cells together face both ways (as a C0 with no known

sides could be considered to), and so this case will be handled correctly as well.

3.3. CORRECTNESS PROOF 71

Figure 3.13: Intersection of added area in the context of the proof.

Proposition 3.2 The action of the overseer leaves (C; p) in the domain of CCRM .

Because the state of CCRM at any given time depends only on the structure of Cc and

p, the proof of this proposition can be broken into two parts. First, based on the de�nition

given above, fC�Ccgmust remain an enterable decomposition, so that whenever the state of

CCRM reaches node X, coverage will continue correctly. Secondly, for Cc, after cooperation,

(Cc; p) must be represented in the FSM corresponding to the actions of CCRM . If these are

both true, then the result of cooperation will be to place CCRM somewhere in its FSM, and

such that it will be able to continue coverage once the current cell has been completed.

Each part of this proposition can now be proven independently as follows:

Proposition 3.2.1 The overseer produces an enterable decomposition outside of the robot's

current cell.

This proposition in turn has several independent components: �rstly, the cells created

and modi�ed by the overseer must be non-overlapping and supersets (or potential supersets,

for incomplete cells) of SID cells. Secondly, the intervals between added and/or modi�ed

cells must be correct. And �nally, all altered incomplete cells other than Cc must end up in

a state from which they can be entered and covered.

Proof that added area is correct is done by induction: before cooperation, all cells in

C are ORD cells, which are by de�nition supersets of SID cells. We then show that when

a cell is added to a decomposition where the cells are supersets of SID cells, the resulting

decomposition will also consist of supersets of SID cells. Since both the cells in Ccom and

the cell Cnew are supersets of SID cells, 8Ci 2 Ccom; (Cnew � Ci) is also a superset of SID

cells. To con�rm that the area added by the overseer from Cnew is in fact (Cnew � Ci),

Cnew is written as Cl [Cm [Cr, where Cl is the area to the left of Ci, Cr the area to

the right of Ci, and Cm the remainder of Cnew, as shown in Fig. 3.13. Cl and Cr are each

rectangular supersets of SID cells, since they are divided at the edge of Ci, itself a superset

72 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b)

Figure 3.14: Potential types of adjacency for an interval i in an added cell Cnew.

of SID cells, and the extension of an SID cell edge will always de�ne an SID edge, as shown

in Fig. 3.2. Cl and Cr will be fed back to the overseer if non-null, at which point they will

remain unchanged relative to Ci (and added to C, as long as they do not intersect with

other complete cells). If Cm is larger than Ci, it will also be given to the overseer, but will

be subject to the vertical intersection test, which in turn sends Cm � Ci to the overseer.

Otherwise, Cm � Ci, or equivalently Cm � Ci = ;. In either case, the total area added

based on Cnew and Ci is (Cl [Cr [[Cm � Ci]) = (Cnew � Ci).

For incomplete cells fCi : Ci 2 Cinc; Ci \ Cnew 6= ;g, it must then be shown that after

Cnew is added, all known edges of Ci lie on edges of the SID. Since in all cases, edges of

Ci that are moved will be coincident with edges of Cnew, which is a valid GRD cell, this

condition is also satis�ed. Finally, the non-overlapping requirement (as well as the fact that

all area not previously in C is retained, purely an eÆciency argument) can be shown as

follows: after Cnew is tested against each cell in Ccom, the added area is
T
i(Cnew � Ci) =T

i(Cnew [Ci) =
S
i Cnew [Ci = Cnew

S
iCi = Cnew [Ccom = Cnew �Ccom.

When a cell Cnew is added, the intervals on its four sides (and any intervals in C that

will correspond to them) are the only intervals that need be considered to show correct-

ness. Correctness implies that the full length of the boundary between any two complete

cells is represented by an interval in each cell, while all wall intervals in the incoming cell

are assumed to be correct and can remain unchanged (since all walls are identical). For

incomplete cells, intervals on their
oor and ceiling must also span no more than the known

extent of the edge. The correctness of interval assignments can be shown by proving that

the overseer's policy of using the cells opposite the interval's endpoints will always �nd all

the cells (and only the cells) opposite the interval. If this is the case, and the assignment

and/or alteration is performed using the correct geometry, the intervals will be correct.

3.3. CORRECTNESS PROOF 73

For most cases of free-space intervals in Cnew, it can be shown that only one cell already

in C can be adjacent to the interval. This relies on the property that all GRD cells have two

opposite attached edges and can be proven by contradiction. To do this, �rst assume that

an interval i in Cnew has two cells across from it, as shown in Fig. 3.14a. These cells (Ca and

Cb) must have unattached left sides, since if a complete cell or wall was adjacent to them

on the left, Cnew could not be, and so Ca and Cb must have attached
oors and ceilings.

However, for vertically adjacent cells, this is impossible | both cells would have had to be

originally covered by robots with the same sweep direction, but neither cell could have been

constructed with that height without the other existing to provide exploration boundaries to

limit seed-sowing. This applies whether these cells are complete or incomplete, but rotating

this picture 90Æ to get that shown in Fig. 3.14b gives a legitimate occurrence, if and only if

Ca and Cb are both incomplete cells. In this case, Ca and Cb must be C0 and C1 (the �rst

two cells created), which have been reduced in height by the addition of the complete Cnew.

If either Ca or Cb was complete, it would have to have an attached ceiling and therefore

have already limited Cnew in x, preventing this possibility, as would have to be the case if

a complete cell was present between them. Therefore, a horizontal interval i can have two

di�erent cells as neighbors if and only if they are both incomplete.

Similarly, a single cell adjacent to any interval must reach both ends of the interval. To

prove this by contradiction, imagine a case similar to that of Fig. 3.14a, but without Cb

present. This is also impossible, since Ca must have something attached to its
oor, which

would also be a neighbor of i.

Finally, it must be shown that any incomplete cell that is altered by the overseer can be

reentered by the robot and coverage continued in it. This includes cells that are created by

splitting an incomplete cell, as shown in Fig. 3.7, as well as modi�cation of existing cells. To

prove this, it is �rst shown that any cell Ci (other than the robot's current cell Cc) created

by CCRM to which the seed-sowing rule (Rule 5) applied before alteration will be enterable,

regardless of the type or number of alterations. Such a cell will always have at least one

neighbor | either the cell into which the robot traveled from Ci or the cell that split Ci

from a larger incomplete cell, in which case the overseer will create an interval between these

two cells. The robot will therefore be able to plan a path to Ci and enter it if Ci is not

the current cell. At this point, Rule 5 of the map interpreter will take over and direct the

robot to the end of the minimum extent of the near edge, from which point it will pick up

seed-sowing with either motion Æ or motion �. This reentry is then still possible after any

alteration, as follows: Ci may be intersected in either x or y by additional incoming cells.

74 CHAPTER 3. COOPERATIVE COVERAGE

If intersected in x, it will become narrower if intersected at its known edge or complete if

intersected at its unknown edge. If Ci is intersected in y, it will simply become shorter.

(It is also possible for Ci to be completely subsumed by an incoming cell, in which case

enterability is not an issue.) In each of these cases, the resultant cell retains its properties

of a known and explored side, an unknown side, and a non-zero minimum width, and so

Rule 5 will take over. The cell will also still have at least one neighbor after alteration (the

cell that caused it to be altered) and therefore will still be enterable.

To show that all incomplete cells will be enterable, recall that in the absence of cooper-

ation, at most two incomplete cells will exist, one of which will be C0. If C0 is incomplete

and does not contain p, it will have been left by the discovery of an interesting point of Case

IV, at which point C0 will have one known and explored edge, making Rule 5 appropriate.

C0 will therefore always be enterable. The �rst time an incomplete cell other than C0 is

created that does not contain p must be when a cell is split by the overseer, such as C2 in

Fig. 3.12b. At this point, there are some restrictions on the structure of the new cell that

can be observed, based on whether the robot is exploring the �rst edge of the cell, exploring

the �nal edge, or performing seed-sowing. First of all, if the robot is seed-sowing in the cell,

Rule 5 will apply both before and after the split, as described above, and so the successor

cells will remain enterable. If the robot is exploring the �nal edge of the cell that is split, the

robot will always be at one end of the explored portion of the edge (cf. node F of the FSM).

Of the two incomplete cells that are created, then, only the one containing p will have a

partially explored edge | the other will have an edge that is either completely explored

(in which case the cell itself will be complete) or completely unexplored. In the latter case,

the new cell will have one known and explored edge and one unknown (although perhaps

limited) edge. This again is the condition for which Rule 5 applies, so these cells will also

be enterable.

Finally, if the robot is exploring the initially discovered side of a cell (and is therefore

in node C of the FSM), it is possible that an incomplete cell will be created that has one

partially explored edge (and one unknown edge). In this case, the overseer will create an

interval between the incomplete cell and the cell responsible for the split. The robot can

then reenter the incomplete cell through this interval (or another interval if present), at

which point Rule 3 will direct it to the nearest unexplored point of the known edge and the

robot will resume edge exploration in node C. This also holds if the cell is intersected by

additional incoming cells. If intersected in x, since the cell will have zero minimum width, it

will be replaced by the incoming cell. If intersected in y, it will either be shortened and have

3.3. CORRECTNESS PROOF 75

Cell relation description p 2 Cnew p 62 Cnew

Cnew \ Ccx = ; no overlap | no e�ect (see text)

Cnew \ Ccn = ;, overlap maxsize only case 1 in text Continue in Cc

Cnew \ Ccx 6= ;

Cnew \ Ccn �y Ccn top/bottom replaced in node X Continue in small Cc

middle replaced as above, but see case 2 in text

Cnew \ Ccn �x Ccn left/right replaced in node X Continue in small Cc

Cnew \ Ccn = Ccn cell subsumed in node X case 3 in text

Table 3.1: E�ects of the overseer on the robot's current cell Cc.

the incoming cell as its new neighbor, or will obtain a known
oor or ceiling, in which case

it will have a completely explored edge and be ready for Rule 5, and therefore enterable.

Proposition 3.2.2 The action of the overseer leaves the current cell Cc such that the state

(Cc; p) is represented in the FSM of Proposition 3.1.

The proof of this proposition can be derived from analyzing all qualitatively di�erent

intersections of the incoming cell Cnew with the current cell Cc. The state that CCRM will

�nd itself in after cooperation depends on whether Cnew overlaps the minimum extent of

Cc or only its maximum extent, and whether p lies in the area de�ned by Cnew (which has

just become a complete cell). The possible intersections are shown in Table 3.1.

First of all, if there is no overlap between the current cell and Cnew, there is still some

potential change to the state of CCRM . If (and only if) Cnew exactly abuts Cc, some of

the intervals along their common edge may be updated. If the common edge is already an

explored edge of Cc, this will have no immediate e�ect, but if the robot is currently exploring

the edge that abuts Cnew, the state may be changed. Since the overseer adds intervals to an

incomplete cell where the interval overlaps the known area of the cell (when the edges abut),

the interval currently being explored may be suddenly extended. However, since intervals

are not added to Cc where they would form a second (disconnected) component along the

edge (instead a placeholder is added along the edge of Cnew), exploration of the edge will

continue as in CCR.

If, on the other hand, there is intersection between Cnew and the maximum extent of

Cc (while not a�ecting the minimum extent), two di�erent cases can result. The generic

possibility is that the intersection simply limits the extent of Ccx (as in the instance shown

in Fig. 2.9) and has no e�ect on the state of coverage. If the overlap is closer to the explored

76 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b)

Figure 3.15: Special cases of alteration of the current cell.

area, however (within w of the current position), an interval is added between Cc and Cnew

for the height of their y overlap. The reason this is done is the case referred to in Table 3.1

as case 1 and shown in Fig. 3.15a. If Cnew is close enough to Ccn , it is possible that the

robot ends up in Cnew, and since Cc is not completely covered yet, the robot must return

to Cc. Adding the interval (from which the adjacency graph is derived and path planning

performed) allows this. It should be noted as well that if the robot is not in Cnew when the

mutual interval is added, this will not adversely a�ect CCRM | when this edge is �nally

reached, the last seed-sowing strip will take place, but the edge will already be explored.

Alternately, if a yet-undiscovered small cell lies between Cc and Cnew, the split that creates

this cell will bring along the interval appropriately.

The next possible instance listed in Table 3.1 is if Cnew partially intersects Ccn in y. If p

is within Cnew when this occurs, by de�nition CCRM will then be in node X of the FSM |

the only possibility when the current cell is complete. However, the remaining cell(s) will be

still be enterable, as shown above, so coverage will be able to continue (and will immediately

continue in one of them). A similar argument holds for intersections in x. One important

point to keep in mind for the y overlap case (the situation referred to as case 2 in Table

3.1) is that when two or more incomplete cells are present in C, Proposition 3.1.1 must be

invoked to ensure that coverage will always be able to continue. On the other hand, if p is

not contained in Cnew, coverage will continue as if cooperation had not occurred. This is

because making a cell shorter will not alter the progress of ongoing seed-sowing (since the

x locations of the minima of Cc are not altered), and if the robot is exploring a side of Cc,

the side will either be made completely explored or will remain explored as far as p.

Finally, when the current cell's minimum extent lies wholly within Cnew, Cc is removed

from C. At this point, if p lies within Cnew, coverage continues from node X as expected.

However, when performing coverage, p need not always lie within Ccn (and therefore Cnew).

Fig. 3.15b shows a case in which a robot performing seed-sowing is suddenly left entirely

outside C. CCRM is actually now in a state not previously required | one in which it is

3.4. IMPLEMENTATION 77

outside of C but within w of a cell, from which it is directed in �x into this cell (Cnew). This

trajectory is generated by a rule added to the map interpreter of CCRM (Rule 0 mentioned

in Appendix A.3.3), which is added only for this occasion. After this trajectory CCRM will

then be in node X and be able to continue coverage.

Proposition 3.3 DCR produces complete coverage of a �nite rectilinear environment by

any number of robots in the absence of inter-robot collisions.

This statement is essentially a combination of the previous propositions. First, from

the point of view of any individual robot in the team, Proposition 3.1 ensures that it will

continue coverage until the area of C is covered and its boundary known and closed, while

Proposition 3.2 ensures that this progress is not interrupted by cooperation. In addition, the

process of cooperation simply adds area to Ccom in a non-destructive way. (If an instance of

cooperation does not add to Ccom, it must be the case that the incoming cell was a subset

of Ccom, and so the cooperation has no e�ect.) Therefore, not only will each robot continue

running DCR until it sees a complete environment, but since every meaningful cooperation

will increasing the number of complete cells (the same measure of progress used for the FSM

in Proposition 2.1), it will eventually achieve complete coverage.

3.4 Implementation

DCR as described in this chapter has been implemented in a simulation that allows a variable

number of robots to cooperate to cover their shared environment. Additional features such

as inter-robot collisions have been added to make it somewhat realistic, as discussed below,

although this means that there is signi�cant potential for unsuccessful trials.

The simulation of DCR runs in a single thread, with each robot moving a small step in

turn. The \physics" is handled by a world modeler based on that developed for CCR that

checks for collisions with walls but also for collisions between two robots. In addition, if one

or more beacons are in the de�ned �eld of view of the robot's \beacon sensor," the location

of the beacon nearest the robot's center is returned to the feature handler, which will then

perform the functions described in Sec. 3.2.2.

Screen shots of the simulation are shown in Fig. 3.16. It is similar to the simulation of

CCR, but has a window for each robot's cell decomposition in progress. In addition, in the

window displaying the shared workspace, each robot can be shown in a di�erent color, or for

the two robot case, with di�erent hatching styles, as shown in Fig. 3.16a. This latter feature

78 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b) (c)

Figure 3.16: A screenshot of the simulation of DCR: (a) a representation of the entire

environment, (b) the decomposition C of robot 0 (rotated 90Æ clockwise from the orientation

in part (a)), and (c) the decomposition of robot 1.

allows the user to clearly see the eÆciency of the algorithm by comparing the cross-hatched

area (that covered by both robots) to the simply hatched areas (that covered by a single

robot).

The basic structure of the simulation is similar to the �rst implementation of CCR, in

that the world modeler moves a robot only a step at a time, rather than simulating an

entire trajectory at once, and leaves the event handler to determine when the trajectory has

completed. Sliding motions are also not used in this world modeler. This implementation

allows simple interleaving of robot motions within a single thread of execution. In addition,

exploration boundaries are handled in parallel with real boundaries in the world modeler.

The simulation therefore runs as follows:

� For each robot Ri, Ri's event handler asks the world modeler to move the robot a

small step. The action of the world modeler is:

{ Calculate the next position for the robot pn = p+Æd, where Æd is in the direction

t� with length from a normal distribution about a nominal step size.

{ If pn is in collision with a wall or exploration boundary, return \wall collision"

{ If pn collision with another robot Ro, return \collision with robot o."

{ Set p = pn. If a beacon is detected, return \beacon at (bx; by)", otherwise, return

null.

� The event handler then:

3.4. IMPLEMENTATION 79

{ For null event (by far the most frequent occurrence), check to see if the maximum

distance td has been traveled for the current trajectory. If so, this represents a

non-collision event, so update C appropriately and call the map interpreter to

generate a new trajectory.

{ For \wall collision," update C appropriately, then call the map interpreter to

generate a new trajectory.

{ For \robot collision," invoke collision avoidance routine as described below.

{ For \beacon detected," pass this datum on to the feature handler.

Note that in the world modeler, exploration boundaries are evaluated in parallel with the

physics model that determines collisions, with the result of the trajectory simply (real collision

_ exploration boundary). The event handler of CCRM therefore does not know which type

of collision has occurred, however, it does not need to know. On the other hand, inter-robot

collisions are returned explicitly as such with the identity of the other robot. This encap-

sulates the results of several messages passed between robots in a real system, one strategy

for which is outlined in Sec. 4.1.

It would also be feasible to implement exploration boundaries in the map interpreter,

by checking each trajectory t against the list EB before submitting it. In this case, if the

maximum distance of the trajectory would extend beyond an exploration boundary, the

distance would be decreased so that the robot could not travel beyond that boundary. A

ag would then be set for the event handler that if the maximum distance was achieved,

this would actually represent a collision. When implementing DCR on a real robot system,

this would be the most reasonable option, since it allows for the trajectory to be executed

as a whole without requiring ongoing checks against the virtual exploration boundaries.

Collision handling has not been explicitly described to this point, and in fact the proof

as so far presented assumes that the robots will not collide. Clearly this is unreasonable

for most teams of mobile robots, and steps must be taken to correctly handle collisions.

The implemented DCR does include simulation of inter-robot collisions and some methods

to deal with them, the details and correctness of which are described in detail in Sec. 4.1.

However, in systems with more than a couple of robots, livelock and deadlock become serious

problems, and so the collisions can be turned o� in the world modeler in order to increase

the success rate and more thoroughly investigate the pure algorithmic interactions among

a larger team.

Also, the simulation of DCR, like that of CCR, incorporates (and usually correctly

handles) small amounts of non-cumulative position error. This manifests itself in all the

80 CHAPTER 3. COOPERATIVE COVERAGE

(a) (b)

Figure 3.17: Problems caused by inaccurate colleague transforms: (a) A cell from a colleague

(C0) may not reach the boundary, leaving a gap for the robot to enter; (b) Intersection of

an incoming cell C0 with an incomplete cell C1 may not eliminate the incomplete cell as it

should.

ways as noted in CCR, but in addition, adding a colleague's cell can result in other types of

structural problems. For example, when a cell is added from a robot with a perpendicular

orientation, the added exploration boundaries and cell edges may not align with real-world

boundaries, as shown in Fig. 3.17a. If not corrected, this could cause the robot to slip

between the new cell and the obstacle, causing at least ineÆciency and possibly error, if the

gap is very thin. Alternately, in the situation shown in Fig. 3.17b, an incomplete cell is not

subsumed, as it should be, but is instead made very thin. This could also potentially lead

to error if the robot (due to motion tolerances) cannot enter the thin leftover cell, either to

complete it or as a step along a path to another cell.

As an attempt to handle this type of position error, as well as to ease the updating of

intervals during coverage, the current implementation of DCR uses explicit corner objects

which lie on the corners of SID cells | each interval points to two corners, and the cell

no longer has an explicit maximum but rather one derived from its intervals. The original

intent of using these corners was that when cells are intersected by the overseer, it should

be possible to explicitly match corners in the incoming cell to corners in C and prevent

problems such as the ones in Fig. 3.17. The overseer was not exactly implemented as

such, but the use of the corner objects did require more careful handling of cells and their

intersections, and was therefore somewhat bene�cial. This stemmed from the fact that since

the edges of the cell's maximum extent are de�ned by four corners, the corners must form a

rectangle. Therefore, when updating a cell, especially when discovering an interesting point

or intersecting cells, their relative relationships must be preserved. A function was written

that aligns the two corners of a cell's edge along the appropriate axis (x or y). However,

3.4. IMPLEMENTATION 81

Figure 3.18: An additional environment used for eÆciency testing. The black square repre-

sents the size of the robots.

Single robot Two robots Three

k orient. ? orient. robots

Number of trials 35 20 15 10

Average cf 2.273 1.560 1.440 1.161

Avg. maximum cf N/A 1.708 1.521 1.250

Avg. cf di�erence N/A 0.3398 0.1959 |

Table 3.2: Performance of DCR in the environment of Fig. 3.18.

since these corners may also belong to other cells, the function also \walks" along the SID

edge de�ned by these corners, updating all other cell edges to the new location of this edge.

This allows an incoming cell to be integrated with the existing cells, but may move cell

edges an arbitrary amount, and is therefore not proposed as a �nal solution to this problem.

3.4.1 Performance reports

DCR was �rst run on both one and two robot \teams" in the environments used to test

CCR shown in Fig. 2.18. Another environment shown in Fig. 3.18 was also used. A number

of trials were performed for each case, with random initial positions and orientations of the

robots as well as randomly located beacons. Again the coverage factor was used as the

metric, in this case used to determine the eÆciency gained by the use of multiple robots.

Since in general the optimum coverage factor for sensor-based coverage is diÆcult if not

impossible to compute, we have chosen to compare the cooperative performance to the

single-robot case in the same environment.

Overall results for the series of experiments in the environment of Fig. 3.18 (an environ-

ment originally created to test the correct handling of narrow corridors in
oors and ceilings

82 CHAPTER 3. COOPERATIVE COVERAGE

Single Two robots Three robots Five Ten

robot k orient. ? orient. w/ coll w/o coll robots robots

Number of trials 50 15 15 10 10 10 10

Average cf 1.986 1.309 1.294 1.134 1.093 0.922 0.698

Avg. maximum cf | 1.408 1.365 1.268 1.205 1.096 0.790

Avg. cf di�erence | 0.2192 0.1417 | | | |

Table 3.3: Performance of DCR in the environment of Fig. 2.18a. Note that all runs with 2

robots include include inter-robot collisions while all runs with 5 and 10 robots do not.

of cells) are shown in Table 3.2. Not included in these results are several runs that failed

to complete successfully, mostly due to problems arising from collisions. Livelock in and

around the narrow corridor was one notable case, in which (for example) one robot would

repeatedly attempt to enter the corridor, preventing another robot from completing cover-

age of the corridor, then back out of the corridor only very brie
y. Another type of problem

seen occasionally was repeated collision in a corner as two robots were each attempting to

complete a cell. However, these cases did not seem (to the human eye) to be noticeably

more or less eÆcient than the cases included in Table 3.2. The results are generally about as

expected | the average robot in a two-robot team travels only about 65% as far as it would

if working alone. On the other hand, if the total time required is of concern, the relevant

statistic is the largest coverage factor of any robot on the team. For the two robot case, this

was generally about 70-75% of the time taken by the single robot. In fact, in some cases,

one of the robots in the pair would take longer than the solo case, if it ended up covering

the entire environment while also taking time to avoid its colleague. (These cases generally

occur when the robots begin near each other and one robot ends up with little to do.) For

the three robot case, the increase in eÆciency is even greater, with each robot spending just

over 50% of the time required by the solo robot.

These data also seem to indicate that (at least for this environment) there is some

distinction between the cases where the robots have parallel orientations (that is, where

their x axes are parallel) and the cases where they have perpendicular orientations. Namely,

the parallel case seems to take slightly longer on average but generally because one robot is

doing more than its fair share of the work (this is indicated by the larger di�erence between

the two robots' coverage factors). This can most likely be explained by noting that in the

perpendicular case, more cells will be created, and the robots can therefore assist each other

more often and divide up the area of the environment more equitably.

3.4. IMPLEMENTATION 83

Single Two robots

robot k orient. ? orient.

Number of trials 50 10 11

Average cf 3.557 1.936 1.981

Avg. maximum cf | 1.947 1.985

Avg. cf di�erence | 0.0218 0.0373

Table 3.4: Performance of DCR in the environment of Fig. 2.18b. R is the relative rotation

between the coordinate systems of the two robots.

Results for similar tests in the environment of Fig. 2.18a are shown in Table 3.3. In this

environment, the coverage factor for a single robot is less than in the previous environment,

but the increase in eÆciency for the two robot case is about the same, namely about 30-35%.

Again there seemed to be better division of labor in the perpendicular orientation cases,

although the overall eÆciency (in terms of either average or maximum coverage factor) was

about the same as for the parallel orientation cases. In this environment, tests were also

run with �ve and ten robots (without inter-robot collisions), as well as with three robots

both with and without collisions for comparison. Somewhat surprisingly, even with ten

robots the overall eÆciency for each robot continued to increase | there were still enough

cells in the environment such that the division of labor could be done in a useful manner.

Certainly these cases bene�ted qualitatively from the absence of collisions between robots,

and quantitatively as well (so that in fact there may be diminishing returns with this many

robots). However, for the three robot case, it can be seen that the experiments run without

collisions were not much less eÆcient than those with collisions.

Finally, DCR was tested in the challenging environment of Fig. 2.18b. The complex

nature of this environment actually proved a boon to DCR. Since either ORD of this

environment (and therefore any GRD) will contain many small cells, the division of labor

could be done easily and very equitably. This can be seen quite clearly in the data in Table

3.4 | the di�erence between the two robots' coverage factors was essentially zero most of

the time, meaning that neither robot was ever idle and waiting for the other to �nish the

only incomplete area. The eÆciency improvement was likewise greater than for the other

environments, with each robot in the team of two requiring only 55-60% as much time as the

solo robot. The division of labor was also equally useful regardless of the relative orientation

of the robots, again presumably due to the large number of cells available for coverage.

Chapter 4

Algorithm Extensions / Discussion

As detailed in the previous chapter, DCR will produce complete coverage under certain

assumptions about the robot system. However, some of these assumptions are unrealistic

when applied to a team of robots in the real world. In this chapter, some of those assump-

tions will be examined and lessened. One important assumption for the proof of DCR is the

absence of inter-robot collisions (although the simulation can generate such collisions), and

some techniques for collision avoidance will be presented here. In addition, an extension

of DCR to a class of rectangular robots will be presented, which is necessary for the mini-

factory. Also presented in this chapter is a discussion of the propagation of data between

robots and how it relates to the scalability of the algorithm.

The end of this chapter includes some discussion of potential extensions to this work.

One type of extension would be to larger classes of robot systems, such as traditional

circular mobile robots operating in polygonal (or more unstructured) environments. A

second extension would be to tethered robots such as the minifactory couriers. Another

class of future work discussed is extensions to the proof of the current implementations of

CCR and DCR, most notably in terms of small position uncertainty in the robots' sensing,

as well as generalization to a wider category of cooperative robot algorithms. Finally,

the speci�c applicability of these algorithms to the minifactory self-calibration problem is

discussed.

4.1 Collision handling

When two robots collide while performing coverage, they must �rst realize that the collision

experienced is with another robot rather than a part of the environment. Having achieved

84

4.1. COLLISION HANDLING 85

this, the robots must then avoid each other so that each can continue coverage. Ideally, this

will be done in a way that does not interfere with the correct progress of coverage, although

it will be shown that this (at least at present) can only be guaranteed for certain situations.

In the current simulation of DCR, the world modeler solves the �rst of these problems

by simply reporting to each robot's event handler that an inter-robot collision has occurred.

Clearly in a real-world system it will not be so simple, but a straightforward solution should

suÆce, as follows: when a robot experiences an unexpected collision, it should send a

message across the network to that e�ect (the \ouch" message). Then, if a second robot also

experiences an unexpected collision at about the same time (some experimentation would

need to be performed to determine the appropriate time window for any given system), the

two could reasonably expect that their collision was mutual. This does require that the two

robots will detect collisions at nearly the same time | if this is not the case for a particular

system, the time window for the \ouch" messages may have to be large enough that some

collisions are presumed to be between two robots when they are simply two robots each

colliding with a wall. In this case, additional motions would be required of one robot to

ensure that the collision was indeed mutual.

If a pair of robots collide before they have become colleagues, the collision o�ers an

ideal opportunity to determine their relative transform. However, since the robots under

consideration have only contact sensing with which to detect each other, additional motion

beyond the �rst collision is necessary. Once they have become colleagues, they then each

have knowledge of the other's location (and perhaps desired direction of travel) and must

maneuver around each other. A strategy for each of these processes is described in more

detail here.

4.1.1 Colleague relationship generation

The ability of a pair of robots to determine the relative transform between their coordinate

systems and thereby become colleagues is limited by the ability of their underlying collision

detection system. For instance, it is assumed here that both robots can sense a collision,

even when one is hit broadside (and therefore may not be impeded along its intended

trajectory). However, it may be the case that the robots can report only that they are not

where they are supposed to be | not from which direction they were hit. Under DCR's

world modeler, since only one robot moves at a time, one of the colliding pair will know

that its progress along the trajectory has been impeded, and it is assumed that the other

robot simply recognizes a bump, but not from a speci�c direction. If both robots are moving

86 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

(a) (b)

Figure 4.1: Utilizing collisions to generate a colleague relationship.

independently (as in a real system) and experience a head-on collision, one is chosen to act

as the \impeded robot" | perhaps the one that sent out the �rst \ouch" message, although

any unique selection criterion could be used.

Under these circumstances, the robot that has been impeded (R0 for the sake of ar-

gument) knows one coordinate of where the other robot (R1) is, namely, one robot width

ahead of itself, as shown in Fig. 4.1a. However, in order to compute their relative transform,

it must �rst discover the relative rotation (01�) between their coordinate systems. (If R1

knows from which direction it has been hit, such as may be possible in the minifactory

system, this next step is unnecessary.) R1 �rst takes a small step in the direction it had

been traveling (t�1) | if this results in collision with R0, the original collision was head-on.

Otherwise, it steps back, then in each of the other three directions, one at a time, until

a collision with R0 is detected. When this occurs, the last direction traveled by R1 (c�1)

will be the opposite of c�0 , the direction traveled by R0 at the time of the initial contact

as shown in Fig. 4.1a. The relative rotation between the two robots' coordinate systems is

therefore calculated as follows:

0c�0 = 0c�1 + �

0c�0 = 0

1�+ 1c�1 + �

0

1� = 0c�0 �
1c�1 + � (4.1)

To calculate the translational part of the relative transform, R0 has knowledge of its

own position 0p0 and R1's position (in R1's coordinates)
1p1. In addition, from the initial

collision, it knows a single coordinate of R1's position in its own coordinates:

4.1. COLLISION HANDLING 87

0c�0 knowledge

0 0p1x =
0 p0x + w

�=2 0p1y =
0 p0y + w

� 0p1x =
0 p0x � w

3�=2 0p1y =
0 p0y � w

However, since the robots have no extrinsic contact sensing, the relative lateral position

of R1 remains unknown. R1 therefore remains at its current position (as the impeding robot,

it knows that this is the required action, so no messages need to be passed) while R0 moves

in a path as shown in Fig. 4.1b. It �rst moves a distance w in a direction � perpendicular to

its previous travel direction. There are two choices for �, so whichever direction permits a

move of length w given known environmental constraints is chosen. R0 then moves a short

distance in its initial colliding direction c�0 and back in �� until collision. At this point,

knowledge similar to that given in the previous table is obtained, except that the other

coordinate of 0p1 is known to be w ahead of R0's current position. R0 then knows all of

0p1, and along with the rotation determined above, the translation between the two robots'

origins can be derived as follows:

0p1 = 0

1T
1p12

4 0p0x
0p0y

3
5 = 0

1R

2
4 0p1x

0p1y

3
5+

2
4 0X1

0Y1

3
5

2
4 0X1

0Y1

3
5 =

2
4 0p0x

0p0y

3
5� 0

1R

2
4 0p1x

0p1y

3
5

where (0X1;
0 Y1) is the location of R1's origin in R0's coordinates and

0
1
R is a rotation matrix

corresponding to the relative rotation 0
1� calculated above. The translation and rotation

can then be used to generate a transformation matrix 0
1T . R0 then gives this transform to

R1, which calculates 1
0T and adds R0 as a colleague.

There is one important caveat with this technique | namely, that it requires a certain

amount of free space around the robots at the time of initial collision. Because of this,

this technique has not been integrated into the implementation of DCR (instead, the robots

are simply told the correct relative transform by the world modeler). In cases where the

robots collide for the �rst time in a narrow corridor, a di�erent technique would be required,

perhaps having each robot simply remember the information that is available (that presented

in the small table above) and move toward an area with enough open space to complete the

colleague generation process.

88 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

(a) (b) (c)

Figure 4.2: Some of the possible geometries of colliding robots.

4.1.2 Collision avoidance1

If two robots are already colleagues (or have just become colleagues), they must then ma-

neuver around each other. In order to retain the reactive nature of DCR, this will not

involve multiple-step plans, although this choice limits the types of collisions that can be

easily avoided. Instead, the collision avoidance routine will look for a single motion that

will best allow the robots to avoid each other and continue coverage correctly. To make this

happen under DCR, the �rst step is that a prioritization is imposed upon the robots. This

is done arbitrarily by choosing the robot with the smaller value of a unique identi�er (e.g.

Ethernet addresses) as the more \important," at least initially. It is then the job of the lower

priority robot to step out of the way of the higher priority robot, using information such as

the higher priority robot's position and desired travel direction. However, this prioritization

is not a strict one, as explained below, and the robots may switch roles in order to most

easily avoid each other.

It should be noted that the discussion and methods presented here apply only to two

simultaneously colliding robots, not three or more, where simultaneous means that the third

collides before the �rst two are done waiting and have moved on.

When two robots take steps to avoid each other during the operation of DCR, they

should attempt to move such that the intended progress of coverage is not disturbed. One

way to ensure this is by moving such that no additional knowledge of the environment is

obtained. The correctness of this technique is not necessarily obvious, but is made possi-

ble by the reactive nature of CCRM and carefully written rules (namely, ones that make

few assumptions about the robot's current position when they �re, which in turn expands

the equivalence classes for that rule, allowing recovery from wherever the robot may have

stepped aside to).

1This is somewhat of a misnomer, as the task is mutual avoidance after an initial collision.

4.1. COLLISION HANDLING 89

Figure 4.3: A schematic description of the \script" followed by a pair of robots after colliding,

in which the decisions made by Rm are shown in rectangles and those made by Rl in ellipses.

Lines between these �gures represent messages passed by the robots.

Therefore, when a collision between robots is detected, the preferred action is for the

robots to avoid each other without leaving the con�nes of previously explored space, which

has been previously denoted as Cmin. It should be noted that two colliding robots may

not have the same Cmin, even if they are already colleagues and have shared all complete

cells, since a cell currently being covered by one robot may not be present in its colleague's

decomposition. Therefore, a strict prioritization of the robots' importance is unwise, since

one robot may be able to successfully step aside when the other cannot. Instead, the robots

alternate importance in order to determine what course of action will be most eÆcient while

allowing both robot to avoid leaving Cmin if at all possible.

In the current implementation of DCR, when two robots collide, they are both aware

of the identity of the other, although as mentioned above, this is not necessary, but merely

a convenience. After the collision, therefore, each robot knows its importance relative to

the other, and so the less important robot (Rl) can give its current position to the more

important (Rm). Rm then calculates where Rl lies relative to its current travel direction |

ahead and to the left (as in Fig. 4.2a), ahead and to the right (as in Fig. 4.2b), on the left

side, or on the right (as in Fig. 4.2c). Note that Rl's travel direction is not considered in

making this determination. Rm then begins the process of discovering a safe way for the

robots to avoid each other, as shown schematically in Fig. 4.3.

Rm �rst makes a request of Rl | either to move to the side a speci�c distance (suÆcient

for Rl to be out of the way of Rm) if Rl is it its way, or otherwise simply for Rl to wait for

it to pass by. In the latter case, the request will always be granted, but in the former, Rl

checks to see if such a move will cause it to leave its Cmin. If not, the move is executed,

and an aÆrmative response is given to Rm, who waits for that move to be executed before

continuing. (In DCR as implemented, all robots move at the same speed at all times, so

90 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

Figure 4.4: A diÆcult, but possible, collision avoidance.

Rm can simply wait a calculable period of time rather than requiring a message from Rl.)

If this safe move is not available to Rl, it will immediately look to step out of the way of

Rm in the opposite direction. If such a move would also take it out of Cmin, it replies to

Rm that no good move is available, and also tells Rm its current direction of travel.

If Rl cannot move out of Rm's way and responds with such a message, the roles of the

two robots are essentially reversed, with Rm now trying to step aside from Rl in either

direction. If this is possible, Rm makes such a move while telling Rl to wait for it. If such a

move is not possible, the state indicated by the question mark in Fig. 4.3 has been reached,

and there is no single move that is guaranteed to be successful. Therefore, in general more

complicated assessments must be made of the situation to come up with the correct action.

For example, in the situation shown in Fig. 4.4, R0 (the \more important" robot) must

move backward a long distance before moving aside into another cell so that the other robot

can pass by. In other cases, such as the one shown in Fig. 4.8 in which the robots collide

soon after they start covering, there is no possible series of motions that the robots can

take to avoid each other without at least one leaving its Cmin. In these cases, the correct

thing to do is not readily obvious. The current implementation of DCR takes the following

approach: Rl will move aside as requested initially regardless of the nature of Cmin, unless

a known or newly discovered wall or walls will prevent this motion. If it cannot move, Rm

will then attempt to move aside without regard for Cmin. Finally, if none of these moves

are available (such as would be the case in the situation in Fig. 4.4), Rl will move in the

direction that Rm wishes to move (i.e. away from Rm rather than aside). It is possible

that none of these motions (or concatenations of the motions) will successfully allow the

robots to continue coverage. In these cases, the robots will be deadlocked until a third robot

happens to pass along data that alters one or both robot's strategy.

4.2. DATA PROPAGATION 91

4.2 Data propagation

It is important under DCR to transfer all data to all colleagues in order to maximize eÆ-

ciency and maintain consistency of each robot's cell decomposition. However, these transfers

must be done in a way that does not produce redundant messages. For example, assume

two robots R1 and R2 are colleagues, as are R1 and R3. When R3 has a new datum to

give out, such as a complete cell or beacon location, it will give it to R1. It then might be

reasonable to expect R1 to pass this datum along to R2 and the remainder of its colleagues.

However, R1 has no way of knowing whether R2 and R3 are themselves already colleagues,

in which case its message would be redundant. Therefore, the policy has been implemented

that each robot will only give out data that it has discovered (or generated) itself. This in

turn mandates that when a pair of robots become colleagues, they not only share their data,

but their colleague lists as well. This will allow each pair of robots to become colleagues

as soon as possible (so that in the example here R2 and R3 would be certain to already be

colleagues), at which point each may give the other all of its own data.

In general, however, for n robots, this means that n2�n colleague relationships will have

to be generated, which is clearly at odds with the notion of scalability. However, for many

systems with large numbers of robots, such as the minifactory, the workspace of each robot

will not extend over the full workspace of the team. In these instances, as long as each robot

knows at least a bound on the extent of its workspace, colleague relationships need only be

generated between robots with potentially overlapping workspaces. This does not violate

the need of each robot to obtain all data relevant to it (and enough for its decomposition to

remain consistent), since all data obtained by robots whose workspaces do not overlap its

own would necessarily be outside its own workspace.

An alternative solution, which may be sensible for system with a large number of robots

in a single common workspace, is to set up the colleague relationships in a well-de�ned (but

not complete) way. For example, a spanning tree could be incrementally constructed over

the robots, with each edge in the tree corresponding to a colleague relationship. This tree

would grow as coverage progresses and more robots become colleagues with each other, and

methods exist to create such trees in a distributed fashion [55]. Then, instead of having each

robot only transfer data that it has generated itself, the following policy would be instituted:

when one robot generates a new datum, it sends it o� to its (very few) colleagues. Each

other robot then takes that datum, adds it to its own information and passes it along to each

of its colleagues other than the one from which it received the datum. Since the colleague

relationships form a spanning tree (which by de�nition does not contain any loops), this

92 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

will result in a �nite number (and in fact the optimal number) of transfers of the data.

4.3 Non-identical and rectangular robots

In chapter 2, CCR was de�ned in the con�guration space of the robot performing coverage.

Then in chapter 3, DCR was de�ned in terms of CCR, and assumed that the maps of the

overall environment generated by each robot would end up the same geometrically. Taking

these two facts together implies that the con�guration space of the robots in the team must

be identical, or equivalently (for this system) that the robots be square and the same size.

While this may in fact be the case for some systems, it turns out to be a more restrictive

(although perhaps easier to understand) assumption than necessary.

CCR is perfectly capable of operating on a rectangular robot, and in fact the current

implementation allows for this circumstance. Since the algorithm operates in con�guration

space, and is generally concerned only with the robot's width, no alterations needed to be

made to accommodate a rectangular robot rather than a square one. However, under DCR,

the correct sharing of cells between robots relies on the underlying SID being identical for

both robots. If the robots are of di�erent sizes, this will not be the case, and in fact, as

shown in parts (b) and (c) of Fig. 4.5, the SID may undergo structural changes. However,

for certain environments and heterogeneous robot teams, we can show that the SIDs of

the con�guration space of each robot will still be structurally identical, such as those in

Fig. 4.5(a,b). It will be shown that cells from such decompositions can be easily shared

under DCR, and these decompositions be will termed compatible as de�ned below. All

the con�guration spaces in Fig. 4.5 are for square robots, and so the robots' orientations

are irrelevant, but con�guration spaces for two rectangular robots (even identical ones) in

di�erent orientations can exhibit the same e�ect. The derivation of conditions for robots

to have compatible SIDs will �rst be shown for square robots of di�erent sizes before being

extended to rectangular robots.

For a given rectilinear environment E, two square robots R1 and R2 will have con�gu-

ration spaces E1 and E2, which can be generated by shrinking E from its boundary by an

amount w1

2
and w2

2
respectively. E1 and E2 can themselves each be treated as rectilinear

environments, and SIDs S1 and S2 can be constructed from each of these. S1 and S2 are

then considered to be compatible if for each cell in S1 there exists a cell in S2 generated

from the same workspace boundary segments on the same sides of the cell. This is in turn

true if (but not only if) the boundary segments in S1 and S2 obey the same left-to-right and

4.3. NON-IDENTICAL AND RECTANGULAR ROBOTS 93

(a) (b) (c)

Figure 4.5: Con�guration spaces (solid lines) and their SIDs (dashed lines) for di�erent

sized square robots in the same environment.

top-to-bottom ordering. This argument also extends to any number of robots | as long as

all pairs of SIDs are compatible, cells can be shared among the team.

A vertical boundary segment bl at x = xl in E with free space on its right will be at

b1l = x0+w1=2 in E
1 and b2l = x0+w2=2 in E

2. (Assume for this discussion that w1 < w2.)

Similarly, a facing boundary segment br (one with free space on its left) at x = xr will be

at b1r = xr � w1=2 in E1 and b2r = xr � w2=2 in E2. For E1 and E2 to be compatible, we

enforce the ordering of bl and br and say that it is therefore suÆcient that b1l < b1r if and

only if b2l < b2r for any such pair of facing boundaries in E:

b1l < b1r , b2l < b2r

xl +
w1

2
< xr �

w1

2
, xl +

w2

2
< xr �

w2

2

w1 < xr � xl , w2 < xr � xl

This is in turn true if and only if the statement:

w1 < xr � xl < w2

is false. Since the robots are square, this argument (and restriction) applies to horizontal

boundary segments as well. Therefore, for two robots to have compatible con�guration

space decompositions in a given environment E, no two facing boundary edges in E (the

original environment) can be separated by more than w1 but less than w2.

For rectangular robots, the same arguments apply, except that instead of a width for each

robot, both a width wi and height hi must be considered. The con�guration space of each

robot is created by shrinking the free space by a di�erent amount in each direction, but since

the robot may be in either orientation, the distance that a given boundary segment is moved

is di�erent for each orientation. For a given boundary segment, then, this is equivalent to

94 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

(a) (b)

Figure 4.6: Construction of workspace cells for sharing between robots of di�erent sizes.

a system with two square robots with sides of length hi and wi respectively. The criterion

for compatible con�guration spaces is then that no two facing boundary edges can be closer

than max
i
(max(hi; wi)) but farther apart than min

i
(min(hi; wi)). Height and width are

interchangeable in this context since the orientation of the robot relative to the environment

cannot (usually) be determined a priori. However, the height and width must obviously be

taken into account individually when generating real-world cells from con�guration space

cells.

It is then straightforward to transform cells that come from one con�guration space to

a compatible con�guration space. This can be done by having the sending robot implicitly

generate the workspace cell that is responsible for the con�guration space cell. This prevents

each robot from having to know any other robot's dimensions. In order to do this, each

edge of the cell is assigned a direction to move so that it will align with the real world

boundary that generated it, as shown in Fig. 4.6. Each edge should move outward (away

from the center of the cell), except for edges that are entirely adjacent to free space. For

those edges, the correct direction is inward, except that if a cell already has a neighbor

along that edge, the edge should be assigned the opposite direction of its neighbor's edge.

In an ORD, the correct direction is always inward, but as shown for the bottom right cell of

Fig. 4.6b, in an SID this may not always be the case. Since cells are created one at a time,

there is never a question about which direction is correct for any given edge (cells given by

a colleague will have the directions already assigned and will be correct for any robot, since

the decompositions are compatible).

Once each edge has been assigned a direction, the real world cell's extent can be easily

calculated by the sending robot by moving each edge by h=2 for top and bottom edges

4.4. FUTURE EXTENSIONS 95

and w=2 for side edges. The intervals must also be altered to appear like their workspace

equivalents, which can be done by moving their endpoints in the direction of movement of

the SID edge propagating away from that endpoint. This simpli�es to moving all endpoints

between a wall interval and a non-wall interval toward the wall interval and all points at cell

corners to the appropriate con�guration space cell corner (thereby requiring only occasional

inspections of any other cell). The receiving robot can then turn this real-world cell back

into one that matches its con�guration space based on its own height and width.

One remaining issue is con�guration space cells that are smaller than the width of the

robot in which both sides need to move inward. This type of cell (such as the middle SID

cell in Fig. 4.5c) does not correspond to a workspace cell with the same neighbors (or in

other words, the con�guration space is not compatible with the underlying environment).

However, the system criterion de�ned above will ensure the cell will have a corresponding cell

with the same intervals in the con�guration space of any robot which receives it. Therefore,

the cell extent is computed as if there was no problem, and transferred with (for example)

its left side farther to the right than its right side. When the receiving robot transforms

the cell back in to its con�guration space, the correct cell boundaries and intervals will be

restored.

Finally, it must be noted that DCR assumes that there are no parts of the environment

that can be sensed (i.e. entered2) by one robot but not another. Any system (robots and

environment) that adheres to the restrictions presented in this section will not invalidate

that assumption, as any such corridor would by de�nition have facing edges closer than the

width of the largest robot but larger than that of the smallest.

4.4 Future extensions

WhileDCR is a self-contained algorithm, as a �rst step into the area of cooperative coverage,

it could provide the starting point for a great deal of continued work. Clearly extending it

to a wider range of environments would be of bene�t, as most mobile robot systems operate

in relatively unstructured environments. On the other hand, the minifactory system would

most bene�t from extensions that deal with tethered robots. In addition to these extensions,

incorporating currently implemented enhancements such as collision handling and position

uncertainty into the correctness proof would be powerful in terms of providing a proven

2\Sensible" and \enterable" are equivalent except for robots with range-limited workspaces, for which in

this case \sensible" is the correct term.

96 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

algorithm suitable for a real-world robot system. Finally, while this system was developed

with an eye toward solving the minifactory self-calibration problem, and does go a long way

toward a solution, there are several remaining practical issues. Some thoughts as to the

directions of each of these pieces of future work are given in some detail here.

4.4.1 Environmental extensions

One extension to DCR that would be very useful for a variety of mobile robot systems

would be extension to environments with arbitrary polygonal or C2 boundaries. For a single

covering robot, sensor-based coverage for these types of environments has been implemented

in various ways [4, 16, 17], and extension of any of these algorithms to keep complete maps

and to allow robots with only intrinsic contact sensing could be relatively straightforward.

Alternately, extending CCRM to these classes of environments would require new underlying

cell representations and a map interpreter that could output any direction (as well as a wall-

following controller for the robot) but the overall reactive structure could remain the same

as well as the intent (and many of the details) of the rules of the map interpreter. The

robot could still use seed-sowing paths to cover each cell and detect various types of critical

points to determine cell boundaries.

Once an appropriate single-robot algorithm is in place, it becomes theoretically feasible

to implement the type of distributed sensor-based coverage presented here to the larger

class of environments. To do this, regardless of the single-robot algorithm used, it would be

important to keep a detailed map of the environment in order to allow map sharing. Maps

are not necessitated by all previous coverage algorithms, but in general it would not be

diÆcult to add map building. More importantly, to implement cooperative coverage with

a strategy similar to that of DCR, the underlying coverage algorithm would need to be

history-independent, like CCRM . This might make extending CCRM preferable to adapting

a previous algorithm for the basis for cooperative coverage.

It is certainly the case that the success of DCR depends heavily on the restricted nature

of the system under consideration. Speci�cally, both the behavior of the overseer and the

proof of correctness rely heavily (although not explicitly, in the overseer's case) on the

existence of an underlying SID of the decomposition, which in turn relies on the fact that

the robots' orientations can only take on one of four distinct values. The fact that the

environmental boundaries align with these orientations makes the decomposition and the

algorithm simpler, although perhaps not fundamentally so. (Certainly the converse is the

case | if the robots' orientations are arbitrary, there is no SID per se, and so coming up

4.4. FUTURE EXTENSIONS 97

(a) (b)

Figure 4.7: Two system-speci�c sweep-invariant decompositions for a speci�c system of

three robots, based on (a) the trapezoidal decomposition and (b) the boustrophedon de-

composition.

with a decomposition and algorithm would be diÆcult regardless of the simplicity of the

environment.)

One possible solution is to keep DCR much the same, and perform cell intersections

in the overseer in much the same way | intersect complete areas, retaining new incoming

areas and shrinking incomplete cells to abut the incoming area, requiring the addition of

a polygon intersection routine. In this case, rather than creating a decomposition based

on supersets of SID cells, the overseer would create one based on supersets of cells of a

decomposition that could be called the SSID (system-speci�c SID). An SSID can be created

by overlaying the oriented decompositions of all the robots in a given system, and clearly

depends on the speci�c orientations of the robots in the team as well as the environment

itself. In polygonal environments, there are two simple ways to decompose the environment

for sensor-based coverage | the boustrophedon decomposition of the type shown in Fig.

2.2b and the trapezoidal decomposition, which is similar but instead divides cells at each

boundary and obstacle vertex. SSIDs based on these decompositions are shown in Fig.

4.7, with each decomposition for three robots with x axes 0Æ;+40Æ; and �80Æ from the

picture's horizontal. The boustrophedon decomposition also works in the same manner for

arbitrary curved environments, unlike the trapezoidal decomposition, and would therefore

be necessary for some systems.

One important issue is then what sort of decomposition to use for this extended al-

gorithm. In the trapezoidal SSID, each cell is a convex polygon of up to 2n sides for n

robots. Therefore, cells in a generalized decomposition would not necessarily themselves be

trapezoids (at least for n � 3), and a more complex type of cell would be required. This

would require additional tests in the event handler since obstacle vertices always indicate

98 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

cell boundaries but intersections of exploration boundaries (which may look like obstacle

vertices depending on how the exploration boundaries are handled) should not. On the other

hand, using an SSID based on the boustrophedon decomposition means that the cells would

not be convex, requiring a more complex intersection routine in the overseer and a more

complex cell representation. In addition, in this case, a cell given by a colleague may cross

over a critical point and therefore take a shape that would not otherwise be seen, requiring

(at a minimum) more complex path planning to get through it. Also, in either case, while

the SID of a rectilinear environment is unique for a given environment, the SSID is not.

Since the proof of DCR uses the existence of a unique SID, it would not carry over directly

to this generic case, although this does not appear to be a fundamental problem. From a

more practical sense, the proliferation of cells in the SSID (especially for the trapezoidal

decomposition) with an increasing number of robots presents a potential problem with cells

becoming smaller and less eÆcient to cover. In addition, exploration boundaries would need

to be explicitly handled in the map interpreter so they could be followed.

Extending this algorithm from the polygonal to the C2 case would require some addi-

tional ingenuity in terms of data representation, transformation and cell intersection by the

overseer. Also, a wall following controller would certainly be a necessity, since the
oor or

ceiling of a cell could take an arbitrarily complex shape without necessarily indicating a

coverage event (and necessary replanning).

Another issue with use on more traditional mobile robot systems is the nonholonomy

inherent in many mobile bases, which may make the seed-sowing path ineÆcient as well as

diÆcult if not nearly impossible to follow. While work has been done on covering known

environments with nonholonomic robots [56] by heuristically concatenating achievable path

segments, it is not entirely clear how this could be extended to the sensor-based case. One

concept worth consideration is to use a di�erent atomic path component (e.g. a spiral rather

than seed-sowing) and then to use a di�erent decomposition which is compatible with this

type of path in the same way that the rectilinear or boustrophedon decompositions are

compatible with seed-sowing paths. Choset et al. [57] suggest how this could be done with

the use of various nonlinear sweep functions through an environment.

4.4.2 Tethered robots

Clearly one of the limitations of DCR when compared to the minifactory system is that

tethers are not dealt with, even implicitly. Even for a single robot, tethers can be problematic

in terms of workspace limitation and binding against obstacles, although when testing CCR

4.4. FUTURE EXTENSIONS 99

on the courier the obstacles used were very low and could be easily cleared by the robot's

tether. With multiple robots, not only is tangling of two robots' tethers an issue, but even

collision of one robot with another's tether could easily lead to confusion, or even a robot

being pulled away from its desired position.

Previous work on tethered robots has focused on a centralized plan for a team of robots

that allows them each to get to a certain goal without undue tangling. Algorithms have

been written by Hert and Lumelsky both for robots in the plane [58] and in IR3 [59] which

take a start and goal con�guration for the robots and produce an ordering of the robots.

In the planar case, the tethers are tangled, but in a prespeci�ed way, and the problem is

to �nd an ordering for the robots' motions such that the goal is reached with the speci�ed

tether locations. In the spatial case (applicable to multiple underwater vehicles), the tethers

remain untangled, and the problem is to �nd an order in which to move the robots such

that tangling does not occur. A di�erent approach to motion planning for tethered robots

in the plane was presented by Sinden [60], in which tethers are not allowed to cross and each

robot reaches one or more goal locations sequentially. The focus of this work was to describe

the problem in the language of graph theory and thereby come up with arrangements of

robot bases and task locations that are amenable to a team of tethered robots. These

algorithms are useful for certain problems (potentially including an operating minifactory),

but somewhat unsatisfactory for the coverage task, as the hope here is to eliminate the need

for group planning (at least beyond a single motion) as well as a central controller. However,

handling the interactions of tethered robots in the context of a more general motion plan is

a daunting task.

To solve the problem of recognizing robot-tether collisions during the minifactory cover-

age task, one potential solution would be to put slight tension on the tethers and instrument

them to measure their length between the courier's forcer and a home position. Then, if

the length became signi�cantly larger than would be expected for the forcer's position, a

collision would be supposed. Synchronized motions of other robots would then be used to

determine which robot was in contact with the tether, without requiring any courier to have

an accurate disturbance force measurement.

Once a pair of robots are colleagues, it is then presumably possible to have them negotiate

their motions to avoid tether tangling while continuing the process of coverage. One way

this could be done is by dividing up the shared workspace into smaller areas, ideally with

one successor area on the same \side" of the environment as the �xed point of each robot's

tether. Each robot would then be able to cover a portion of the environment without having

100 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

to worry about its colleague's tether. This is somewhat similar to the \reservation area"

concept used to generate collision-free courier motion in an operating minifactory, in which

the platen area is divided into geometric parcels that can be claimed and released by each

courier in an asynchronous manner as it moves to a goal location [61]. However, decomposing

the environment along lines that are not due to the environment is fundamentally opposed

to the proof presented earlier, and would have to be done in a restricted fashion to avoid

invalidating the proof.

From the software point of view, DCR can actually gain eÆciency from the knowledge

that tethered robots generally have workspaces limited by their tethers, and that a team

of tethered robots may in fact have only partially overlapping workspaces. First of all, as

long as each robot has some idea of its workspace (even if it is a large upper bound), the

colleague referral process can take that into account: if one robot has colleagues on either

side of it that can never share area, it can avoid referring them to each other. Also, when

robots share information about covered area, they can do so only when it is meaningful

to their colleague. That is, if one robot's cell has a null intersection with its colleague's

workspace, it need not be passed on. In addition, when a robot's overseer gets a new cell

that only partially lies within its robot's workspace, the intervals of that new cell that point

to unreachable free space can be designated as such. These intervals would then be treated

as walls by CCRM to avoid planning paths to attempt to reach these areas. Such a policy

would not interfere with the correctness of DCR: since each point in the environment would

still be reachable by (and therefore in the decomposition of) at least one robot, the complete

coverage of the entire workspace would still be assured.

An alternate solution to the entire tethered robot problem, at least for the minifactory,

is to remove the tethers from the robots. Research is currently ongoing in the Micrody-

namic Systems Laboratory (primarily by Ralph Hollis) on development of tetherless couri-

ers. These robots will use closed-loop control to allow them to consume signi�cantly less

power than under their traditional open-loop operation (and therefore be feasible to oper-

ate from battery power), and may operate on customized platens with integrated passive

microvalves for feasible in-platen air bearings to eliminate the need for high pressure air to

be provided to the forcer.

4.4.3 Proof extensions

Some of the additions to DCR described above work correctly in many situations, but are

not proven to work in all cases. Speci�cally, collision handling in constricted environments

4.4. FUTURE EXTENSIONS 101

(a) (b) (c)

Figure 4.8: An example of two robots colliding at the outset of coverage, in which robot 1

has to learn something about the environment before the robots can avoid each other.

and handling of small position uncertainties are areas that have been addressed in simulation

but could be of greater bene�t if proven to be correct in the context of DCR. In addition,

generalizing the proof structure to a larger class of cooperative algorithms could allow for

proofs of these algorithms as well as give direction for algorithm development for other

cooperative robotic tasks.

When two robots collide with each other, it is often possible for them to avoid each

other while not leaving previously explored area and therefore make progress in a provably

correct fashion, as described above. However, in many circumstances, this is simply not

possible. For example, consider the case shown in Fig. 4.8, in which two robots that have

just begun coverage collide. Since neither has completed their �rst trajectory, neither can

knowledgeably step aside. When R1 moves to the side in Fig. 4.8b, it runs into a wall which

will now describe one point on the right of C0. R1 cannot completely ignore this information,

since it needs to recognize that it must now move to the left to avoid R0
3. However, when

this information is added to C, there may be a detrimental e�ect on coverage, since the

discovery of a side edge before the
oor or ceiling of a cell are known does not correspond

to a transition previously de�ned in the FSM of CCRM . In this particular case, assuming

no further inter-robot collisions, R1 will successfully explore this new edge of C0 and start

seed-sowing to the left, but there are more complicated cases that have yet to be proven,

and in fact even the enumeration of such cases is an interesting challenge. For instance, if

the motion in Fig. 4.8c also ended in collision, both robots would have to move to opposite

sides of the corridor in order to pass by, at which point R1 would have a cell with two known

and unexplored sides but unknown
oors and ceilings | de�nitely a case not considered in

3It may be possible to remember this information only as long as necessary to avoid the other robot, but

then the \all clear" event signaling the end of the avoidance process must be explicitly detected.

102 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

the proof of CCR.

The provably correct handling of position uncertainty would also be a great boon for

the implementation of both CCR and DCR. In order to do this, �rst for CCR (and CCRM),

the FSM representation would have to be scrutinized to show what additional transitions

could occur with position uncertainty (such as the situation shown in Fig. 2.17b). Also,

it would be important to show that each transition will occur independent of the position

uncertainty, given the types of concessions made in the event handler as implemented in

simulation. It is quite likely that this strict enumeration of possible events would uncover

subtle problems in the current implementation of CCR, which would in turn help improve

the way position uncertainty is handled.

For DCR, the proof under position uncertainty would still be built in the same way

from the proof of CCR. Even with that in place, however, it would still remain to show

the correctness of the overseer's and feature handler's actions. The current instantiation

of the feature handler is based on beacons which, under the present world modeler, do not

have any uncertainty in their position. However, it is reasonable to consider adding such

uncertainty, in which case the potential error in the transform (in X and Y , since � can

be assumed to be an exact multiple of �=2) must be computed and incorporated into the

potential errors in the cells added by the overseer. In this case, since incoming cells are

added to C destructively, it may be better to wait for more data to arrive before settling

on a transform between two colleague robots. Alternate methods of map matching, such as

some of the image mosaicing algorithms described in Sec. 3.2.2, incorporate large amounts

of inaccurate data and compute a relative transform using statistical techniques such as

maximum likelihood estimation, and as such, it may be possible to de�ne probabilistic

measures of transform error based on sensor error models.

Once a colleague transform is produced, the overseer is adding cells that have error both

from their creation and from their transformation. It must then be shown that given the

error models for each process, the cells are added in such a way that a valid GRD results

and that it is representative of the underlying environment. This latter statement refers

to the potential mismatch of cells by the overseer, creating cell corners and placeholders

where none should exist. Finally, when one robot is referred to another through a mutual

colleague, the error in the two transforms has the potential to accumulate. This e�ect can be

minimized if the two referred robots base their transform (at least in part) on environmental

features that both have detected, but this will not always be feasible. In general, the error

in a transform generated by chaining two other transforms together will be simply additive

4.4. FUTURE EXTENSIONS 103

| since the rotation of each transform under DCR can be set to an exact multiple of �=2,

the only error is in translation, which is out of IR2 and can therefore be added together.

The maximum possible error for a team of n robots is then simply n�1 times the maximum

error in any one transform, although in general the error will be much smaller, and depends

on the order in which the colleague relationships are generated.

Finally, the development of the proof ofDCR, while intimately involved with the particu-

lars of the various algorithmic components, has an inherent structure that may be applicable

to other cooperative robotic algorithms. The fact that the single-robot algorithm can be

represented by a �nite state machine (including all possible environmental interactions) en-

ables the proof, and the limited ways in which cooperation can occur allows each to be

analyzed in the context of the FSM of the single-robot algorithm. This in turn allows the

implicit generation and analysis of a state machine representing the cooperative task, which

can then be shown to have the same properties as the original single-robot FSM. This sur-

face analysis of the proof is perhaps not speci�c enough to be useful for directing other

algorithms and proofs, however, more thorough analysis may produce a formal structure

for such algorithms which would show in what ways a correct single-robot algorithm could

be made cooperative regardless of the speci�c underlying task. This structure could then

also in
uence single-robot algorithms during development to make them more amenable to

cooperation in a provable framework.

4.4.4 Application to minifactory

As an attempt to tackle the self-calibration problem for the minifactory, the algorithms

presented in this dissertation form the backbone of a solution, but some important com-

ponents remain. First of all, the goals of the self-calibration procedure must be speci�ed,

and they are twofold. The �rst goal of self-calibration is for each courier to have a precise

map of its local environment (including all platen boundaries and overhead devices) and be

able to automatically use that map to perform the correct motions during the operation of

the factory. The other goal of self-calibration is to produce an accurate global map that

is annotated with the identities of all agents in the factory that can be used by the AAA

interface tool [10] (the software in which the factory is designed, simulated, and monitored)

to render a graphical representation of the minifactory during operation.

The requirements for each courier can be divided into the generation of a correct anno-

tated local map and the integration of that map into its minifactory program. The former

can be dealt with by having each courier perform the coverage algorithms described here.

104 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

However, in the minifactory setting, the tethers of the robots are a signi�cant challenge to

this task, as mentioned above. In addition, not only must a courier localize each overhead

beacon, but a communication process (either using the beacon itself as a communication

channel or over a network) would be required to annotate the beacon with the identity

of the robot to which it belongs. Additional local calibration techniques may be required

to discover the complete kinematic relationship of the overhead robot with respect to the

courier. With these components in place, however, the output of DCR would be a geometric

map annotated with the names of the other robots the courier would be able to interact

with. Then, with the appropriate extraction of information from the annotated beacons

and cells, the courier's second task of integrating the data into its assembly program is

straightforward. The AAA software already developed by Jay Gowdy enables this process

| under the AAA protocol, all programs are speci�ed in terms of positions relative to �xed

agents and are only instantiated into numerical representations at run time [61], so as long

as the beacon annotations match the robot names given in the program, the integration

will be performed correctly. If the names do not match, this is a good indication that the

factory has not been constructed as speci�ed, and human intervention would be required to

either rebuild the factory or alter the couriers' programs.

In terms of generating a global map to be used to monitor the progress of the operating

factory, DCR is also close to the required software (assuming the ability of the couriers to

perform it). Under the current implementation, each covering robot will develop a complete

map of the environment, and so with appropriate annotation, any courier's map could be

used by the interface tool. Alternately, if the data propagation under DCR is limited by

the workspace of the couriers as described in Sec. 4.2 above, the interface tool could still

easily obtain a complete global map. It could simply add itself to the DCR community

as a coverer with an in�nite workspace and an origin coincident with one of the couriers',

thereby obtaining a complete map from the couriers as they performed coverage. In either

case, however, in a large factory, the error developed in chaining together a large number

of transforms between the couriers could be signi�cant. This could perhaps be mitigated

once the coverage process is complete by using all data in each courier's map to develop

a maximally likely transform between each pair (or more) of couriers. It should be noted,

however, that it is suÆcient for the map used by the interface tool to be moderately close to

that of the actual factory, since it is used only for rendering for the human monitor, and the

actual assembly process uses the couriers' own accurate local maps. Assuming the beacons

are annotated as mentioned above, this map should be able to be directly transformed into

4.4. FUTURE EXTENSIONS 105

one usable by the interface tool. The interface tool is already able to contact agents to

obtain their physical geometry, which is used to build up the rendering of the factory, and

software is currently present with which the location of a beacon (or two) on a robot is used

to automatically generate the correct location of the robot with respect to the rest of the

factory [10].

Chapter 5

Conclusions

When a team of robots needs to share a workspace to achieve a common goal, there is a

need for a common map, and often an autonomously generated map is desirable, either for

accuracy or eÆciency concerns or simply to perform a tedious task in place of a human

operator. In this thesis, algorithms have been presented with which a homogeneous team of

robots in a speci�c system can cooperatively perform complete sensor-based coverage of their

shared workspace, generating a complete common map in an eÆcient manner. The systems

to which these algorithms apply belong to a class derived from the minifactory system, and

are those in which square robots with only intrinsic contact sensing operate in rectilinear

environments. The cooperative coverage process is done in a geometrically exact manner (or

as exact as the robots themselves allow), and is correctly performed in all �nite rectilinear

environments under assumptions of position accuracy and lack of inter-robot collisions. In

addition, the eÆciency of the coverage process has been shown to increase for each robot in

a team (at least for reasonably small teams) compared to a robot working alone, as would

be hoped for a divisible cooperative task. Also importantly for robotic applications, the

robustness of the system to individual robot failure is quite high, since there are no explicit

plans or an a priori division of labor.

To implement cooperative coverage, a novel algorithm for a single robot was �rst re-

quired. The algorithm developed, CCR, performs coverage of arbitrary rectilinear environ-

ments using intrinsic contact sensing without using time-based history or more than single

step plans. These attributes are crucial to the cooperation technique used, as they allow

the map that is used to direct coverage to be altered at any time without interrupting or

confusing the coverage process. CCR was then proven to produce complete coverage by

developing and analyzing a �nite state machine that represented all possible ways in which

106

5.1. CONTRIBUTIONS 107

coverage could progress. Finally, it was successfully implemented on a minifactory courier

operating in a variety of structured environments. Cooperation was then a�ected by adding

two algorithmic components (to form the algorithm DCR) that alter the internal state of

CCR without interfering with its ability to perform coverage. This decoupling of the coop-

eration form the coverage process also enabled the development of a proof of correctness of

DCR, which itself is similarly decoupled. This proof �rst shows that the states of the �nite

state machine that represents the progress of coverage are the same in the cooperative case,

and then shows that any added transitions due to potential cooperation do not induce new

cycles or lead to states not included in the �nite state machine.

In addition, DCR is seen as an early step toward more general robust cooperative peer-

to-peer exploration, and various avenues of future work in this direction have been discussed.

From a practical robotics standpoint, extensions of DCR have been implemented that allow

for small position errors and collision avoidance, and extensions to a wider variety of robots

and environments have also been discussed. From a theoretical view, there is also the idea

that the cooperation methodology that allowed for the proof could be generalized to other

cooperative robotics tasks, which could then also be proven to be correct.

5.1 Contributions

There are several contributions of this thesis, as follows:

� Development of the �rst cooperative sensor-based coverage algorithm that does not

take advantage of initial knowledge or environmental modi�cations.

While there has been research into cooperative exploration and sensor-based coverage,

the concept of a team of robots with unknown relative initial positions (such as will

occur in the minifactory system) was little investigated | the only such work known

uses dense marking of the environment to achieve cooperation, which is diÆcult (if not

impossible) to implement. The algorithm developed here, DCR, achieves cooperative

coverage without the use of a central controller or marking of the environment. This

required not only the creation of an appropriate sensor-based coverage algorithm for a

single robot in the team, but also the development of run-time techniques for detection

and calculation of the robots' relative positions and division of labor of the coverage

task in a completely distributed fashion.

� Correctness proofs of the single-robot and cooperative (in the absence of collisions)

coverage algorithms.

108 CHAPTER 5. CONCLUSIONS

For any sensor-based coverage algorithm, an assurance of complete coverage is ex-

tremely important. This was achieved �rst for the single-robot case, and this proof

was built upon to create a proof of the cooperative algorithm. From a di�erent perspec-

tive, this work has also provided a new type of provable distributed robotic algorithm,

which is a contribution to that �eld, as the range of distributed tasks for which proven

algorithms exist is still fairly restricted.

� Development of sensor-based coverage for robots with only intrinsic contact sensing

in rectilinear environments.

Sensor-based coverage algorithms tend to apply to particular types of robot systems.

Only the work of Acar and Choset [16] describes complete sensor-based coverage with

contact sensing of any type, and does not consider the case of only intrinsic contact

sensing. While perhaps not directly applicable to many other robot systems, the

development of such an algorithm was required for the task at hand, and could be

the foundation for algorithms for similarly equipped mobile robots in less structured

environments.

� Performance of complete sensor-based coverage of unknown environments on a real

robot using only intrinsic contact sensing.

To date, very little sensor-based coverage work has included experimental results,

primarily because most mobile robots have poor sensing, both of obstacles (when using

sensing such as sonar) and of their own position, due to well-known problems of dead

reckoning. The one application where robots have performed coverage is randomized

lawn mowing, in which no map is kept, and guarantees of complete coverage are

statistical in nature when present at all. The couriers of the minifactory provided a

system in which these problems were moot, and so the algorithm developed was able

to produce correct coverage (and complete maps) of various structured environments,

both simply and non-simply connected, demonstrating that geometric sensor-based

coverage can be successfully implemented on a robot with suÆciently accurate position

and obstacle sensing.

� Extension of the cooperative coverage algorithm to include certain types of collisions

and position uncertainty.

In order for cooperative coverage to be usable and robust for a real team of robots,

it must include handling of collisions between robots, and techniques have been put

5.1. CONTRIBUTIONS 109

forth to deal with this problem. In addition, although the minifactory couriers have

very accurate position sensing, it is still not perfect, and the algorithm as implemented

does allow for small amounts of inaccuracy without impeding the progress of coverage.

Appendix A

Algorithmic details

The full description of CCR (and CCRM) is given in this appendix.

First, de�nitions of a few terms:

� Cix;dir is the value of the (dir) edge of Cix

� Cin;right = min(tr,br), Cin;left = max(tl,bl)

� Known(Ci,dir) if Cix;dir = Cin;dir

� Finite(Ci,dir) if 0 < jCix;dir � Cin;dirj <1

� Explored(Ci,dir) if the intervals on the (dir) side span the edge from
oor to ceiling

� Exploredto(Ci,dir,to dir) if the intervals on the (dir) side reach Ccx;to dir.

� Coveredto(Ci,dir) if Ciw;dir = Cix;dir

� t� is the direction of travel of the trajectory that has just ended

� t� is the direction of contact (if any) of the trajectory that has just ended

� p = (px; py) is the robot's position and w its width

� �dir is the direction opposite to dir

� Cc is the cell robot's \current" cell (which gets set by the map interpreter as described

below)

A.1 CCR event handler

For the description of the event handler, the direction of the last trajectory (t�) is required,

as well as the result of the last trajectory (collision, loss of contact, or maximum distance

achieved), whether it was a sliding motion or free-space motion, and the robot's position p

at the time of the coverage event.

110

A.1. CCR EVENT HANDLER 111

If t� 6= ;, compute a point p� = p � �t� , extend the nearest wall interval on the side

being contacted to p�.

For collision events:

� If the t� edge of Cc is unknown:

{ If t� = �y and p is outside Cc, put short wall interval just beyond current

(placeholder) interval, exit.

{ Set the t� edge of Cc to px or py as appropriate.

{ If t� = �x (side edge discovery):

� If Cc has a cell neighbor along the t� edge, set its (� � t�) edge and extend

its
oor and ceiling intervals to px.

� Else if Cc has a holder neighbor across the t� edge, move it to x = px.

� Else, add a wall interval to the t� edge of Cc at py.

� Else, if p is at the t� edge of Cc:

{ If t� = �x, extend a wall interval to py.

{ Otherwise, extend the near corner of Ccn to px if possible, and if there is a strip

in progress, extend Ccw to include the strip and deactivate the strip.

� Else (edge known but p not there | unexpected collision):

{ If t� = �x, something has gone wrong, exit.

{ If p is near a partially explored side edge of Cc (as in Fig. 2.8a, assume right edge

for explanation), add a new cell Cn+1 from py to the
oor or ceiling of Cc with

the intervals from Cc's right edge and Ccn;right = Cn+1x;left = Ccwr . (Uncertain

edge between cells.)

{ Otherwise, add a new placeholder from py to the
oor (if t� = +y) or ceiling

(t� = �y) of Cc, set the near side of Ccx to px.

For non-collision and loss of contact events:

� If py > Ccx;ceil :

{ If Ccn;left < px < Ccn;right , split Cc: create a new cell Cn+1 on the side of Cc

nearer to p with the boundary between Cc and Cn+1 at px. Copy the intervals

from the changed side of Cc to Cn+1 and create mutual intervals in Cc and Cn+1

over the height of Cc.

112 APPENDIX A. ALGORITHMIC DETAILS

{ Else if Ccbl � px � Ccbr (case of Fig. 2.5d), create a new cell Cn+1 with zero

minimum width at px and minimum height equal to that of Cc. Let dir = side

of Ccn closer to p, set Ccx;dir = px and Cn+1n;�dir = Ccn;dir.

{ Else if near side of Cc has at least one interval, must be �nishing holder that

extends to Ccx;ceil . Extend holder to py, add strip (if present) to covered area.

{ Else set side of Cc and add new placeholder and corresponding interval in Cc

(case of Fig. 2.5b).

� Similarly for py < Ccx;floor
1

� If px > Ccx;right:

{ If there is another cell Co abutting Cc (containing p), �nd the interval in Co

containing py, change it to point to Cc. Also add a similar interval in Cc and

delete the placeholder corresponding to the old interval in Co.

{ Otherwise, create a new (zero-length) placeholder at (Ccx;right; py).

� Similarly for px < Ccx;left .

� Otherwise (p 2 Ccx), no change to C.

A.2 CCR map interpreter

The decision process of the map interpreter can be represented by the following pseudo-code,

with the �rst applicable rule determining the robot's trajectory. This means that after every

\if," an \else" is implied.

1. If p is in two cells' maximum extents Cax and Cbx :

� If Can is taller than Cbn , move in x toward Can .

� Move in x toward Cbn .

Otherwise, p should be in only one cell, call that cell Cc.

2. If Finite(Cc;left):

� If px < Ccn;left, move in +x into Ccn .

1This is actually done with a for loop in the event handler.

A.2. CCR MAP INTERPRETER 113

� If the left side interval at py points to free space, move in y just past the end of

the interval.

� Move in �x.

Do the same for Finite(Cc;right).

3. For the side d of Ccx nearer p, if Known(Cc;d) and not Explored(Cc;d):

� If py > Ccx;ceil, move in �y, if py < Ccx;floor, move in +y.

� If there is no interval at py on the d side of Cc, then if there is any interval on the

d side, move in �y to the nearest point of the nearest interval, otherwise move

in �x (d).

� If the interval at py is a wall, move into contact with the edge, then move in �y

toward the unknown portion of the edge while maintaining contact.

� If the (free-space) interval at py has a known endpoint in the direction of the

unknown portion of the edge, move in �y to that endpoint.

� Move to a point just outside Cc;d, then in �y toward the unknown end of the

interval.

4. If Cc has unknown ceiling or
oor, move in +y or �y respectively.

5. If not(Coveredto(Cc;right)) or

(Known(Cc;right) and not (Exploredto(Cc;ceil;right) and Exploredto(Cc;floor;right))):

� If not near the
oor or ceiling, move to the nearer one.

� For the nearer of the
oor and ceiling, let da = the x value of the right end of

the rightmost interval minus Ccwr.

� If da < w, go to the end of the interval, then move in +x while maintaining

contact with the edge.

� Move in �y away from the nearby
oor/ceiling.

Same for Cc;left.

6. If C0 is incomplete, plan a path to it as described below and take the �rst step along

that path.

7. If Cc has at least one placeholder neighbor:

114 APPENDIX A. ALGORITHMIC DETAILS

� For each placeholder neighbor of Cc, calculate the manhattan distance from p to

the nearest point in the placeholder.

� For the placeholder Hs with the smallest distance:

{ If py > Hs;top, move in �y

{ If py < Hs;bottom, move in +y

{ Move in �x to a point just outside Ccx, and create a new incomplete cell

Cn+1 with Cn+1n the same height as the placeholder.

8. If there is any placeholder in H, for the �rst placeholder in H, plan a path to the cell

it adjoins and take the �rst step on that path.

To plan a path from Cc to a cell Cd, �rst de�ne N(Ci) as the set of cells that neighbor

Ci and V a global list of cells that have been visited during the search. Then �nd the �rst

cell on the path as follows:

Plan path(Cd,Cc):

{ If Cd 2 V , return ;.

{ Add Cd to V .

{ If Cc 2 N(Cd), return Cd.

{ Otherwise, for each cell Ci in N(Cd), call Plan path(Ci,Cc) If this returns any-

thing other than ;, return it.

This is perhaps not entirely intuitive, but produces a depth-�rst search of a spanning

tree of C, returning the cell adjacent to Cc to which the robot should travel to eventually

reach Cd. Then, to reach this next cell Cnext:

� If p 62 Cc, move in �x (may be required after �nishing exploration of a placeholder

when moving to an incomplete cell).

� If py > Cnext;top, move in �y.

� If py < Cnext;bottom, move in +y.

� Move in �x to a point just inside Cnextx .

A.3 CCRM updates

As described in Sec. 3.2.1, several changes are required to the above algorithm in order to

function in generalized rectilinear decompositions. These changes are as follows:

A.3. CCRM UPDATES 115

A.3.1 Vertical neighbor handling

A new function is added to the event handler that is called at any collision when t� = �y.

It works as follows:

� Check all cells other than Cc to see if one is across the t� edge of Cc at py. If such a

cell (Co) exists:

{ If there is no interval along the t� edge of Cc, add a zero-length interval pointing to

Co and replace what should be a piece of a placeholder in Co with a corresponding

interval2.

{ If there is no nearby non-wall interval in Cc, add intervals in Cc and Co that

point to each other. Find the placeholder in Co adjacent to the new interval and

shrink it to px.

{ If there is a non-wall interval in Cc near px, extend it and its corresponding

interval in Co to px, and shrink the placeholder adjacent to the interval in Co. If

this causes the placeholder to have zero length, delete it.

� If there is no interval on the t� side of Cc or no nearby interval with a wall neighbor,

add a zero-length interval at px pointing to a wall.

� Otherwise, extend the nearby wall interval to px.

A.3.2 Event handler

In addition to calling the above function at every collision in y, the event handler must add

the following functionality:

� When colliding with a �nite edge of Cc, adjust the
oor and ceiling intervals to reach

only as far as px. If there is is a vertically adjacent neighbor at px, �nd its interval

i whose neighbor is Cc, then set i's extent to that of Ccn and move the ends of i's

neighbors to abut i.

� For unexpected collisions in �y, if splitting Cc, copy the intervals on the �t� edge of

Cc to the same edge of the new cell Cn+1, and if there is another cell across that edge,

split its interval into two, pointing to Cc and Cn+1.

� For non-collisions in �y, if splitting Cc, copy intervals as above.

2Since py may be in the middle of Co, this may involve the splitting of one placeholder into two short

ones.

116 APPENDIX A. ALGORITHMIC DETAILS

A.3.3 Map interpreter

The map interpreter adds a small rule to handle an immediate result of cooperation and

updates two others to deal with vertically adjacent cells.

0. If px is not in any Cix but is within w of one cell Cc, move in �x into Cc.

7. (Add) If the closest placeholder Hs is horizontal:

{ If px > Hs;right, move in �x.

{ If px < Hs;left, move in +x.

{ If px �Hs;left > � or Hs;right � px > �, move in �x to the nearer end of Hs.

{ Create a new cell Cn+1 with zero minimum width at the side of Hs nearer p, add

an interval near the end of Hs pointing to Cn+1.

8. Once a destination cell Cd is chosen (as previously), if it is a vertical neighbor of Cc,

move �rst in �x if necessary, then in �y into Cd.

Appendix B

Courier sensors

The minifactory couriers possess two novel sensors that enable the implementation of sensor-

based coverage as described in this thesis. A summary of the operation of each sensor is

provided in this Appendix.

B.1 Magnetic platen sensor

To determine the relative position of the courier's forcer with respect to the platen (and

therefore with respect to its environment), the forcer incorporates a novel ac magnetic

position sensor. This sensor was developed by myself, Al Rizzi and Ralph Hollis [11] and is

capable of sensing the position of the forcer with resolutions of 0.2 �m in translation and

0.0015Æ in rotation (1�). A picture of this sensor integrated into the forcer of a production

Northern Magnetics planar motor is shown in Fig. B.1.

The basic principle of the sensor is to use the structure of the platen surface to deter-

mine the position of the forcer relative to the platen. The platen is composed of .020 in.

(0.508 mm) square steel teeth in a .040 in. (1.016 mm) grid (in a pattern like that of a wa�e

iron) which are surrounded by an epoxy back�ll to provide a very
at surface. These teeth

are used as the stator component of the planar motor of which the forcer is the moving

member. The forcer contains toothed linear motor segments through which magnetic
ux

is steered to step the forcer across the platen.

The position sensor uses a similar toothed structure, shown as the end view of a pair

of sensors in Fig. B.2, to resolve position. The forcer contains four pairs of sensors, two

of which sense translation in x and two which sense y. In order to generate a position-

dependent signal, a 100 kHz sine wave current is driven through the drive coils which in

117

118 APPENDIX B. COURIER SENSORS

Motor

section

Motor

section

Single

1-DOF

sensor

Air bearing

orifice

Integrated

3-DOF sensor

15 cm

Tether

connector

Figure B.1: Commercial planar motor forcer with integrated 3-DOF magnetic sensor.

Figure B.2: End view of a pair of magnetic platen sensors.

turn induces a 100 kHz magnetic �eld in the platen teeth. This �eld then couples into each

of the two sense teeth in varying amounts depending on the relative position of the platen

and sensor teeth as shown in Fig. B.2. Coils are wound around these sense teeth such that

they obtain a current proportional to the di�erence of the magnetic
ux through the two

sense teeth. The sensor on the left of Fig. B.2 represents a case where the �eld couples

entirely through one sense coil, and the sensor output is therefore maximal, while the sensor

on the right shows the case in which an equal amount of
ux is present in each sense tooth

and so the sensor output is zero.

The output of the sense coils is a low amplitude 100 kHz sine wave whose amplitude is

dependent on the position of the forcer. This output can be given by a function of the form

Vs(x; t) = As(x)�sin(2�fdt), where As(x) is the position dependent magnitude of the signal

and fd = 100 kHz. This signal Vs is ampli�ed, demodulated and integrated with custom

low-noise electronics to extract As. The electronics also include digital timing circuitry

triggered by the courier's computer such that DC values representing sensor position are

B.2. OPTICAL COORDINATION SENSOR 119

returned at the desired commutation frequency of the motors.

The function As(x) can be reasonably approximated by a sine wave whose period is

that of the platen teeth. Since this function is not one-to-one with respect to position,

however, a pair of sensors are used to determine position within the period of the teeth of

the platen. This quadrature pair of sensors is located 1.25 teeth apart, as shown in Fig. B.2

and is similar in construction to a quadrature optical encoder (as well as the forcer motors

themselves). This pair of sensors returns a sine and cosine with respect to position, so that

their arctangent can be used to determine forcer position (within a single platen tooth). In

practice, since the outputs are not exactly a sine and cosine, a polynomial calibration is

used to modify the result of the arctangent calculation. The computed sensor positions of

the four sensor pairs are used to determine the position and orientation of the forcer, which

are used to perform closed-loop control of the courier.

The sensor that was designed and built for the couriers is unique in that it contains four

sensor pairs (suÆcient to obtain the full 3-DOF position of the forcer) in a single rigid body,

as can be seen in Fig. B.1. The eight sets of drive and sense teeth are ultrasonically machined

from a single piece of ferrite material, and the coils that wrap around them are provided by

a single
exible circuit board for each sensor pair. This allows for easy manufacturability as

well as ensuring that the four sensor pairs are aligned with respect to each other with very

high precision.

B.2 Optical coordination sensor

The other sensor carried on board the forcer is the optical coordination sensor, developed

by Jimmy Ma, Ralph Hollis and Al Rizzi [15]. This is an upward-looking sensor based on a

position sensitive photodiode (PSD) that can return the position of a light spot falling on

the photodiode to sub-micron resolution.

The mechanical construction of this sensor is shown in Fig. B.3 (�gure courtesy Arthur

Quaid [50]). The photodiode is at the base of the sensor, with a lens above it to focus the

light from LED beacons onto the sensor surface. This allows the LEDs (e�ectively point

light sources at the distances of interest) to be seen from a fairly large area compared to the

size of the PSD. The PSD itself is a duolateral device that has two x outputs (x1 and x2)

and two y outputs (y1 and y2). The position of the center of the light spot in x is computed

as (x1 � x2)/(x1 + x2) and similarly for y. Therefore, when the light is centered over the

PSD, the four outputs will be equal, and the calculated position will be (0,0).

120 APPENDIX B. COURIER SENSORS

YLED Beacon
c

x

h

lateral effect

position-sensing

diode

optical filter

lens

motor

platen

ψx

Figure B.3: Mechanical schematic of the optical coordination sensor.

The key feature of this sensor is that it allows LED beacons to be detected and localized

in the presence of other light sources, such as sunlight and overhead
uorescent lights. This

is done through both optical and electronic �ltering. The �rst line of defense against other

light sources is a colored glass �lter placed at the top of the sensor housing which eliminates

virtually all visible light while allowing infrared light to pass through.

The second and more important method of screening out other light sources is through

modulation of the LED beacon. In the current system, the LED is driven by a 5 kHz square

wave. The sensor outputs are therefore also approximately 5 kHz square waves, and are

sent to a phase lock loop circuit which recovers signals of this frequency and produces a

clean square wave in phase with the LED signal. This signal is then used to synchronously

demodulate the sensor signals, which are further �ltered with standard low-pass �lters,

summed and di�erenced with analog ampli�ers and read by precision analog to digital

converters in the courier's control computer. The resulting measurements are divided as

shown above to produce values that correspond to the position of the light spot on the

PSD, which is used to compute the angles between the LED-lens axis and the vertical axis,

shown in Fig. B.3 as x (y is also obtained). To localize the beacon in x and y it is merely

necessary to drive these angles to zero (and a controller has been implemented by Arthur

Quaid to do precisely that [50]), whereas to determine the height h of the beacon a simple

triangulation process is used.

Appendix C

Acknowledgements, revisited

When my thesis proposal was �rst announced, it was pointed out that all of my committee

members have eleven letters in their full names. As an occasional crossword puzzle con-

structor, this seemed like an opportunity too good to pass up. And when I discovered the

way the long answers could cross symmetrically in the middle, it became inevitable. And

so I humbly present the following puzzle. [I would also like my committee to note that

the puzzle was constructed over two evenings several months ago | it does not represent a

signi�cant use of my recent time.]

121

122 APPENDIX C. ACKNOWLEDGEMENTS, REVISITED

123

124 APPENDIX C. ACKNOWLEDGEMENTS, REVISITED

Bibliography

[1] Y. S. Suh and K. Lee, \NC milling tool path generation for arbitrary pockets de�ned

by sculptured surfaces," Computer Aided Design, vol. 22, no. 5, pp. 273{284, 1990.

[2] M. Ollis, Perception algorithms for a harvesting robot. PhD thesis, Carnegie Mellon,

1997.

[3] M. Held, On the Computational Geometry of Pocket Machining. Springer-Verlag,

Berlin, 1991.

[4] J. Y. Park and K. D. Lee, \A study on the cleaning algorithm for autonomous mobile

robot under the unknown environment," in Proc. of IEEE Int'l Workshop on Robot

and Human Communication, pp. 70{75, Sept. 1997.

[5] D. W. Gage, \Randomized search strategies with imperfect sensors," in Mobile Robots

VIII, pp. 270{279, 1993.

[6] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida, \Cooperative sweeping by multiple

mobile robots," in Proc. of IEEE Int'l. Conf. on Robotics and Automation, pp. 1744{

1749, April 1996.

[7] R. L. Hollis and J. Gowdy, \Miniature factories for precision assembly," in Int'l Work-

shop on Microfactories, (Tsukuba, Japan), pp. 9{14, 1998.

[8] R. L. Hollis and A. E. Quaid, \An architecture for agile assembly," in American Society

of Precision Engineering 10th Annual Mtg., October 1995.

[9] A. A. Rizzi, J. Gowdy, and R. L. Hollis, \Agile assembly architecture: An agent-based

approach to modular precision assembly systems," in Proc. of IEEE Int'l. Conf. on

Robotics and Automation, pp. 1511{1516, April 1997.

[10] J. Gowdy and Z. J. Butler, \An integrated interface tool for the architecture for agile

assembly," in Proc. of IEEE Int'l. Conf. on Robotics and Automation, pp. 3097{3102,

May 1999.

[11] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, \Integrated precision 3-DOF position sensor

for planar linear motors," in Proc. of IEEE Int'l. Conf. on Robotics and Automation,

May 1998.

125

126 BIBLIOGRAPHY

[12] A. E. Quaid and R. L. Hollis, \3-DOF closed-loop control for planar linear motors," in

Proc. of IEEE Int'l. Conf. on Robotics and Automation, May 1998.

[13] A. E. Quaid and A. A. Rizzi, \Robust and eÆcient motion planning for a planar robot

using hybrid control," in Proc. of IEEE Int'l. Conf. on Robotics and Automation, May

2000.

[14] W.-C. Ma, \Precision optical coordination sensor for cooperative 2-DOF robots," Mas-

ter's thesis, Carnegie Mellon, 1998.

[15] W.-C. Ma, A. A. Rizzi, and R. L. Hollis, \Optical coordination sensor for precision

cooperating robots," in Proc. of IEEE Int'l. Conf. on Robotics and Automation, May

2000.

[16] E. Acar and H. Choset, \Critical point sensing in unknown environments for mapping,"

in Proc. of IEEE Int'l Conf. on Robotics and Automation, April 2000.

[17] S. Hert, S. Tiwari, and V. Lumelsky, \A terrain covering algorithm for an AUV,"

Autonomous Robots, vol. 3, pp. 91{119, 1996.

[18] A. Pirzadeh and W. Snyder, \A uni�ed solution to coverage and search in explored and

unexplored terrains using indirect control," in Proc. of IEEE Int'l. Conf. on Robotics

and Automation, pp. 2113{2119, April 1990.

[19] R. C. Chandler, A. A. Arroyo, M. Nechyba, and E. Schwartz, \The next generation

autonomous lawn mower," in Florida Conf. on Recent Advances in Robotics, May 2000.

[20] B. R. Donald, J. Jennings, and D. Rus, \Information invariants for distributed ma-

nipulation," International Journal of Robotics Research, vol. 16, no. 5, pp. 673{702,

1997.

[21] L. E. Parker, \ALLIANCE: An architecture for fault tolerant, cooperative control of

heterogeneous mobile robots," in Proc. of IEEE Int'l Conf. on Intelligent Robots and

Systems, (Munich), pp. 776{83, Sept. 1994.

[22] P. Stone and M. Veloso, \Task decomposition, dynamic role assignment and low-

bandwidth communication for real-time strategic teamwork," Arti�cial Intelligence,

vol. 110, pp. 241{273, June 1999.

[23] T. W. Min and H. K. Yin, \A decentralized approach for cooperative sweeping by

multiple mobile robots," in Proc. of IEEE Int'l Conf. on Intelligent Robots and Systems,

(Victoria, B.C.), pp. 380{85, October 1998.

[24] B. Yamauchi, \Decentralized coordination for multirobot exploration," Robotics and

Autonomous Systems, vol. 29, no. 2, pp. 111{18, 1999.

[25] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, \MAC versus PC: Determinism

and randomness as complementary approaches to robotic exploration of continuous

domains," Int'l Journal of Robotics Research, vol. 19, pp. 12{31, January 2000.

BIBLIOGRAPHY 127

[26] Y. Huang, Z. Cao, S. Oh, E. Kattan, and E. Hall, \Automatic operation for a robot

lawn mower," in Mobile Robots, (Cambridge, MA), pp. 344{54, October 1986.

[27] V. Lumelsky, S. Mukhopadhyay, and K. Sun, \Dynamic path planning in sensor-based

terrain acquisition," IEEE Trans. on Robotics and Automation, vol. 6, no. 4, pp. 462{

472, 1990.

[28] H. Choset and P. Pignon, \Coverage path planning: The boustrophedon decomposi-

tion," in Proc. of Intl. Conf. on Field and Service Robotics, 1997.

[29] E. Rimon. Personal communication, 2000.

[30] Friendly Robotics, RL500 Owner Operating Manual. Available at

http://www.friendlyrobotics.com/um/RL500 manual.pdf.

[31] Friendly Robotics, \RoboSim: RL500 simulator." Available at

http://www.friendlyrobotics.com/sim/RoboSim.exe.

[32] T. Balch and R. C. Arkin, \Behavior-based formation control for multiple mobile

robots," IEEE Transactions on Robotics and Automation, vol. 14, pp. 929{39, De-

cember 1998.

[33] J. H. Reif and H. Wang, \Social potential �elds: A distributed behavioral control for

autonomous robots," Robotics and Autonomous Systems, vol. 27, pp. 171{94, May 1999.

[34] H. Osumi, \Cooperative strategy for multiple mobile manipulators," in Proc. of Int'l

Conf. on Intelligent Robots and Systems (IROS), (Osaka, Japan), pp. 554{9, Nov. 1996.

[35] J. S. Jennings, G. Whelan, and W. F. Evans, \Cooperative search and rescue with a

team of mobile robots," in Proc. of the 8th Int'l Conf. on Advanced Robotics, pp. 193{

200, July 1997.

[36] H. R. Everett, G. A. Gilbreath, T. A. Heath-Pastore, and R. T. Laird, \Controlling

multiple security robots in a warehouse environment," in Proc. of the Conf. on Intelli-

gent Robotics in Field, Factory, Service and Space (CIRFFSS), (Houston), pp. 93{102,

March 1994.

[37] A. C. Sanderson, \A distributed algorithm for cooperative navigation among multiple

mobile robots," Advanced Robotics, vol. 12, no. 4, pp. 335{49, 1998.

[38] I. Rekleitis, G. Dudek, and E. Milios, \Multi-robot exploration of an unknown environ-

ment, eÆciently reducing the odometry error," in Proc. of Int'l Joint Conf. in Arti�cial

Intelligence, (Nagoya, Japan), pp. 1340{1345, August 1997.

[39] S. Kato, S. Nishiyama, and J. Takeno, \Coordinating mobile robots by applying traÆc

rules," in Proc. of IEEE Int'l Conf. on Intelligent Robots and Systems, (Raleigh, NC),

pp. 1535{41, July 1992.

[40] A. Drogoul and J. Ferber, \From Tom Thumb to the dockers: Some experiments with

foraging robots," in From Animals to Animats II, pp. 451{460, MIT Press, 1993.

128 BIBLIOGRAPHY

[41] L. E. Parker, \Cooperative motion control for multi-target observation," in Proc. of

IEEE Int'l Conf. on Intelligent Robots and Systems, (Grenoble), pp. 1591{7, Sept.

1997.

[42] E. Moraleda, F. Matia, and E. A. Puente, \ARCO: Architecture for autonomous mo-

bile platforms cooperation in industrial environments," in Proceedings of Intelligent

Autonomous Vehicles, (Madrid), pp. 651{5, March 1998.

[43] F. R. Noreils, \Toward a robot architecture integrating cooperation between mo-

bile robots: Application to indoor environments," Int'l Journal of Robotics Research,

vol. 12, pp. 79{98, Feb. 1993.

[44] B. L. Brummitt and A. Stentz, \GRAMMPS: A generalized mission planner for multiple

mobile robots in unstructured environments," in Proc. of Int'l Conf. on Robotics and

Automation, (Leuven, Belgium), pp. 1564{71, May 1998.

[45] A. Cai, T. Fukuda, F. Arai, and H. Ishihara, \Cooperative path planning and navigation

based on distributed sensing," in Proc. of Int'l Conf. on Robotics and Automation,

(Minneapolis), pp. 2079{84, April 1996.

[46] N. Rao, V. Protopopescu, and N. Manickam, \Cooperative terrain model acquisition

by a team of two or three point-robots," in Proc. of IEEE Int'l. Conf. on Robotics and

Automation, pp. 1427{1433, April 1996.

[47] K. Singh and K. Fujimura, \A navigation strategy for cooperative multiple mobile

robots," in Proc. of IEEE Int'l Conf. on Intelligent Robots and Systems, (Yokohama),

pp. 283{8, July 1993.

[48] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, \Contact sensor-based coverage of rectilinear

environments," in Proc. of IEEE Int'l Symposium on Intelligent Control, Sept. 1999.

[49] M. H. Raibert and J. J. Craig, \Hybrid position/force control of manipulators," ASME

Trans. on Dynamic Systems, Measurement and control, vol. 103, pp. 126{33, June 1981.

[50] A. Quaid, A Planar Robot for High-Performance Manipulation. PhD thesis, Carnegie

Mellon, July 2000.

[51] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, \Distributed coverage of rectilinear en-

vironments," in Proc. of the Workshop on the Algorithmic Foundations of Robotics,

(Hanover, NH), March 2000.

[52] J. Yi, M. S. Lee, and J. Kim, \A map mosaicking method using opportunistic search

approach with a blackboard structure," in Document Analysis Systems: Theory and

Practice, vol. 1655 of Lecture Notes in Computer Science, pp. 322{35, Springer-Verlag,

Nov 1999.

[53] D. Capel and A. Zisserman, \Automated mosaicing with super-resolution zoom," in

Proc. of Conf. on Computer Vision and Pattern Recognition, (Santa Barbara), pp. 885{

91, June 1998.

BIBLIOGRAPHY 129

[54] R. D. T. Janssen and A. M. Vossepoel, \Computation of mosaics from separately

scanned line drawings," in Proc. of Workshop on Applications of Computer Vision,

(Sarasota, FL), pp. 36{43, Dec 1994.

[55] R. G. Gallager, P. A. Humblet, and P. M. Spira, \A distributed algorithm for minimum-

weight spanning trees," ACM Transactions on Programming Languages and Systems,

vol. 5, no. 1, pp. 66{77, 1983.

[56] C. Hofner and G. Schmidt, \Path planning and guidance techniques for an autonomous

mobile cleaning robot," Robotics and Autonomous Syst., vol. 14, pp. 199{212, 1995.

[57] H. Choset, E. Acar, A. Rizzi, and J. Luntz, \Exact cellular decompositions in terms

of critical points of Morse functions," in Proc. of IEEE Int'l Conf. on Robotics and

Automation, April 2000.

[58] S. Hert and V. Lumelsky, \The ties that bind: Motion planning for multiple tethered

robots," Robotics and Autonomous Systems, vol. 17, pp. 187{215, 1996.

[59] S. Hert and V. Lumelsky, \Motion planning in R3 for multiple tethered robots," IEEE

Transactions on Robotics and Automation, vol. 15, pp. 623{39, August 1999.

[60] F. W. Sinden, \The tethered robot problem," Int'l Journal of Robotics Research, vol. 9,

pp. 122{133, February 1990.

[61] J. Gowdy and A. A. Rizzi, \Programming in the architecture for agile assembly," in

Proc. of IEEE Int'l. Conf. on Robotics and Automation, pp. 3103{8, May 1999.

