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Abstract

This thesis describes the implementation of 3D virtual environments for a mag-

netic levitation haptic device which has been developed at Carnegie Mellon Uni-

versity. This interface allows the user to interact with virtual and remote envi-

ronments in six degrees of freedom with haptic (force/torque) feedback to the

user’s hand. The technology gives high motion resolutions (2-3 microns) at high

position bandwidths (120 Hz), thereby providing a ”high fidelity” interaction ex-

perience. The aim of the project was to create several demos for this specific

device using an application programming interface which takes care of the low-

level control of the hardware. Three different demos have been implemented with

the purpose of highlighting the devices capabilities.

The first demo is a cube imprisoned in a box. The user has the impression that

he or she holds a virtual cube in the hand. By manipulating it around and hitting

the walls of the outer box the user feels forces and torques resulting from the

interaction of the two virtual bodies. The second demo is an implementation of a

virtual texture plate. Three sine wave texture patterns with different amplitudes

and periods and a smooth surface can be felt by the user when moving a virtual

probe across the surfaces. The third demo involves touching virtual objects with

a complex geometry. The object is represented by a triangular mesh which can

contain thousands of triangles.

The following thesis describes the implementation of these three demos and

provides insight in the difficulties of creating a visio-haptic experience. This

involves efficient integration of physical simulation of the virtual world, displaying

the simulation graphically and finally controlling the haptic device. Altogether

must operate at a high update rate and therefore programming is challenging.
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Zusammenfassung

Die vorliegende Arbeit beschreibt die Implementierung von 3D virtuellen Umge-

bungen eines magnet-schwebe Haptik Gerätes, das an der Carnegie Mellon Uni-

versity entwickelt wurde. Dieses Gerät ermöglicht es dem Benutzer mit einer

virtuellen oder fernliegenden Umgebung zu interagieren und stellt dabei eine

Kraftrückkoppelung in 6 Freiheitsgraden zur Verfügung. Die verwendete Tech-

nologie garantiert hohe Bewegungsauflösung (2-3microns) bei gleichzeitig hoher

Bandbreite von ungefähr 120 Hz. Diese überdurchschnittlich guten Eigenschaften

bewirken ein sehr realitätsnahes Gefühl der virtuellen Umgebungen.

Ziel diese Projektes war es mehrere Anwendungen für diese Haptik-Gerät

mit Hilfe einer Programmierschnittstelle, die für die direkte Hardware-Regelung

zuständig ist, zu entwickeln. Dabei wurden 3 verschiedene Demonstrationsan-

wendungen programmiert die vor allem zugeschnitten sind um die einzigartigen

Eigenschaften des magnet-schwebe Haptik Gerätes hervorzuheben.

Das erste Anwendungsbeispiel hat als virtuelle Umgebung einen Würfel der

sich im Inneren eines größeren Würfels befindet. Der Benutzer hat das Gefühl

den kleinen Würfel in seiner Hand zu halten. Wenn er nun diesen Würfel bewegt

und ihn gegen die Kanten und Wände des größeren Würfels stoßt spürt er die

Kräfte die durch die Zusammenstöße der beiden virtuellen Objekte entstehen.

Das zweite Demonstrationsprogramm simuliert die geometrische Beschaffen-

heit von Oberflächenmustern bestehend aus Sinuswellen mit verschiedenen Am-

plituden und Perioden. Der Benutzer hält dabei einen virtuellen Tastkopf in

seiner Hand, bewegt diesen über die sinus-gewellten Oberflächen und spürt somit

die verschiedenen Muster.

Das dritte Programmbeispiel macht es möglich virtuelle Objekte mit kom-

plizierter Geometrie zu berühren. Die Objekte werden mittels eines Dreiecks-

mesh dargestellt, welches aus mehreren Tausend Dreiecken bestehen kann. Ins-

besondere stellt diese Tatsache eine große Herausforderung für die Program-

mierung von virtuellen Umgebungen dar.

In der folgenden Arbeit wird beschrieben wie diese drei Demonstrationspro-

gramme implementiert wurden und welche Schwierigkeiten bei der Erstellung

von virtuellen Umgebungen zu beachten sind. Eine effiziente Integration von

physikalischer Simulation, graphischer Darstellung und Regelung der Hardware

ist unumgänglich, da alles zusammen bei einer hohen Aktualisierungsrate durchgeführt
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werden muss. Dieser Umstand stellt besondere Herausforderungen an die Pro-

grammierung solcher virtuellen Umgebungen.
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1 Introduction

One of the new fields in computer interaction is called haptics and allows com-

puter users to interact mechanically as well as visually with a virtual environment.

The word haptics comes from the Greek root haptikos meaning ”able to grasp or

perceive” - which describes the scope of this field very precisely.

The field of haptics is very young, but nevertheless it is already very promis-

ing to have a big impact on many fields of human activity. For instance medical

procedures could be practiced on virtual patients, or CAD modeling can be made

much easier by mechanically manipulating the 3D objects, which would be very

helpful in assembly. Effort-reflected flight or other vehicle control could be accu-

rately simulated with reaction forces and vibration feedback to the operator.

In the future, these capabilities could be exercised over long distances, opening

up new applications in remote diagnostics and repair and tele-medicine.

1.1 Critical consideration for haptic devices

Haptic devices are usually very complicated systems and therefore several con-

siderations are essential when designing such devices. These important charac-

teristics determine the performance of the device and have a big impact on the

capability of generating reality like perception of rigid, soft and liquid bodies.

The most important characteristics of haptic devices are:

Degrees of Freedom: Haptics interaction with 3D virtual environments is

very restricted with a device having less than six degrees of freedom [19], [20]. The

human arm and hand for example has much more than 6 DOF and is therefore

considered as a redundant system. The additional degrees of freedom provide

humans with high flexibility when it comes to manipulating real objects. 6 DOF

are required at least to achieve any possible pose of the manipulandum in the

device’s workspace. On the other hand, providing 6-DOF capability traditionally

has implied mechanical complexity and much higher cost.

Bandwidth: The bandwidth of a haptic device is an essential property for

providing a realistic behavior of the virtual environment. A Low bandwidth

makes the simulated environment feel sluggish. Unfortunately achieving high

bandwidths in an electromechanical device is very challenging for the design and
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control of the hardware.

Resolution: In order to provide a realistic feel of the virtual environment, it

is essential to be able to perceive small details, such as fine textures [3] or stick-

slip friction. This is only possible if the device resolves extremely small changes

in position and force.

Impedance (stiffness) range: When the user moves through free space,

no friction should be felt, but if the virtual object attached to the manipulandum

hits a hard surface, it should feel perfectly rigid. In practical systems, neither of

these objectives is achieved, however the range of possible impedances felt by the

hand should be maximized.

2 The Magnetic Levitation Haptic Device

Even if the field of haptics is relatively young, many well functioning devices

have already been commercialized. A very popular device on todays market is

the three-degree-of-freedom PHANToM device [1], which uses a parallelogram

configuration with DC motors and cable transmission. A 6-DOF version of this

device [2] has been developed as well, but was not very successful due to weak

force and torque characteristics. Furthermore very high costs have limited its

availability.

In 1998 an alpha version of a so-called magnetic levitation haptics device has

been developed by Prof. Ralph Hollis at Carnegie Mellon University. This alpha

version has been reengineered in the last 4 years, and remarkable improvements in

performance have been achieved while lowering the cost, in order to make it suit-

able for commercialization (figure 2). Its applications will include CAD, medical

training, tele-manipulation, hand controllers, vehicle simulation, and computer

interfaces for blind users.

This device exhibits extremely high fidelity due to the fact that no motors,

gears, bearings or linkages are used. Therefore artifacts of conventional haptic

devices like cogging and friction are not present. Furthermore the magnetic

levitation device stands out for its extremely high stiffness range [5, 6, 7, 8,

9, 10, 11, 12, 13].

A direct connection between the simulated environment and the user’s hand is
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Figure 1: Magnetic Levitation Haptics Device (Hollis, CMU).

given by a controlled magnetic field in which the handle levitates. The magnetic

field is able to control the handle in 6 DOFs friction-free providing high bandwidth

and high resolution motion. With no doubt this approach provides the highest

fidelity haptic interaction currently achievable.

The handle is attached to a light weight bowl-shaped ”flotor” containing six

spherical coils. The magnetic field is created by NdFeB permanent magnets. The

pose of the flotor is determined by tracking three LEDs which are attached to

the flotor using optical position sensors (PSDs)

The MLHD system particularly stands out for its high -3dB position band-

width of 130 Hz compared to the 10 Hz of the popular 3-DOF PHANToM device.

Furthermore the stiffness of 40 N/mm cannot be achieved by any other 6DOF
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haptic device.

The disadvantage of the magnetic levitation haptic device is its small motion

range of +-14 mm in translation and +-8 in rotation. However this can be over-

come by scaling, using rate control or indexing.

Main performance characteristics of the device:

Attribute Value Attribute Value

Degrees of Freedom 6 Maximum impedance 40.0 N/mm

Translational Workspace spherical Minimum impedance 0.002 N/mm

Translation range +/-14 Impedance ration 20,000:1

Rotation range +/-8 Flotor mass 503 g

Position bandwidth 120 Hz (-3dB) Levitation power 4.5 W

Position resolution 3µm (1σ) Device pose adjustable

Peak force 40 - 100 N Manipulandum interchangeable

Peak torque 4.5 - 8.8 Nm Manipulandum buttons 2

RT operating system QNX Neutrino 6.3 User interface structured API

Table 1: Performance characteristics of 2nd generation magnetic levitation haptic
interface.

3 The Maglev working principle

The user holds the freely-levitated handle of the haptic device, maneuvering it in

free space to provide position and force/torque information to a physically-based

3D simulated environment. The running simulation provides 6-DOF force/torque

output to the manipulandum, and consequently to the hand. Both, the proprio-

ceptive (kinesthetic) senses of the fingers, hand, and wrist as well as the tactile

senses in the skin are involved in the interaction.

The haptic controller is housed separately from the haptic device to increase

flexibility. The position and orientation of the manipulandum is computed from

information given by the optical sensors and actuator currents are computed

from the commanded force torque wrench. An application programming inter-

face (API) provides a straightforward interface to hardware capabilities. In most

cases, haptic rendering algorithms are executed in the user’s attached worksta-

tion, but the system also supports running the user’s algorithms directly on the

haptic controller.
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The hemispherical shape of the levitated part, called flotor, allows an equal

range of motion in all directions, and enables the user to easily grasp a manipu-

landum located at the center. The stator will enclose the flotor except for holes

on the inner and outer surfaces; the manipulandum to be grasped by the user

projects through the inside hole while all necessary wiring from the flotor hangs

down through the outer hole [9] (figure 2).

The typical position of the user’s hand is also shown in figure 2. As the device

is manipulated by the user, the control system causes the dynamics of the flotor

to reflect the calculated dynamics of a 3D virtual tool in the given simulated

task. Reaction dynamics on the tool are felt by the user through the fingertip

and hand.

3.1 Position/Orientation Sensing

An essential requirement for any haptic device is that the user’s hand motion is

accurately measured and sent to the application which is simulating the virtual

environment. In our case, this means accurately measuring the position and

orientation of the flotor in real time as it is controlled by the user through the

manipulandum. In a further step the measured position is rigidly assigned to an

object of the virtual world. To achieve a realistic performance, this position has

to be measured as accurately as possible.

The sensor design for the magnetic levitation haptic device consists of three

light-emitting diodes (LEDs) which are attached to the flotor and three 2-D

lateral-effect position sensitive photodiodes (PSDs) situated orthogonally on the

outer stator (figure 3). These provide six independent variables (x and y on each

sensor) which can be transformed into the position and orientation of the flotor.

A lens arrangement in front of each PSD will demagnify the motion of each LED

by a ratio of approximately 10:1. Wide angle LEDs will be used to ensure that

light from the LED always fills the lens system.

Once the x and y coordinates of each LED point is measured, the forward

kinematic calculation has to be performed in order to achieve the position and

orientation of the flotor.

The stator frame S is attached to the outer body of the haptic device and has

its origin at the center of the flotor’s workspace. The relation between this stator

frame and the three frames of the PSDs, A, B and C, is a constant homogenous
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Figure 2: Optical sensors and related coordinate frames ([23] NFS Proposal,
Hollis 2003).

transformation. The coordinate frame F is attached to the flotor and it’s origin

is coincident with the one of the stator frame S when the flotor is located in the

center of the work space.

Calculating the inverse kinematics, e.g. finding the coordinates of the LED

light spot on the PSDs as the flotor moves around, is straightforward. Since frame

F is rigidly connected with the triangular base (shown in gray) to which LED

emitters EA, EB, and EC are attached, knowing the homogenous transformation

between flotor and stator frame is sufficient to find the light spots on the PSDs.

For example, for LED a (emitter EA), with the constant vector Af (the location of

LED a with respect to the flotor frame) and the constant transformation matrix

T as , this is given by,

Aa = T as T
s
fA

f (3.1)

The light source is imaged on the PSD at a point (sa,x, sa,y) given by the lens

equation [
sa,x

sa,y

]
= (
−lz
Aaz

)

[
Aax

Aay

]
(3.2)

where lz is the distance from the lens to the PSD (figure 3a).

The inverse kinematics is a function of six independent variables describing

the position and orientation of the flotor frame with respect to the stator frame

S. The representation used is n1, n2, θ, X, Y , Z, where n1 and n2 represent the x
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and y components of a normalized rotation axis, θ the rotation angle about this

axis, and X, Y and Z the translational motion of the origin of F . Creating T sf as

a function of these six variables plus n3 (the z component of the rotation axis)

and computing sa,x and sa,y from eqs. 3.1, 3.2 above gives the LED light spot

position on PSD A:

sa,x =
lzll[n1n3(1− cos θ)− n2 sin θ] + Z

ll[n2
1 + (1− n2

1) cos θ] +X + lz − lt
(3.3)

sa,y =
lzll[n1n2(1− cos θ) + n3 sin θ] + Y

ll[n2
1 + (1− n2

1) cos θ] +X + lz − lt
(3.4)

where ll is the distance from the origin of S to the lens and lt the distance

form the origin to the PSD surface. The computations for sensors B and C are

equivalent.

Unfortunately, no closed-form solution exists for computing the forward kine-

matics, i.e. finding the flotor position and orientation from the light spot position.

Therefore a fast numerical root-finding procedure, devised by Yu and Fries [21],

is applied. It uses the flotor motion history to obtain initial position guesses.

Referring to figure 3b the directions of the three vectors from the emitters to the

lenses are known; i.e. they can be readily computed from the measured light spot

positions on the PSDs and the (fixed) transformations of the sensor frames A, B,

and C from the stator frame S. Only the magnitudes of the vectors are unknown,

so the solution of the position and orientation of the flotor can be reduced to a

third-order problem. The lens positions are given by Si, and the LED positions

are Ei; the LED-to-lens unit vector directions are bi and their magnitudes are ui.

For i, j= 1...3 and i 6= j it can be seen from the figure that

Ei = Si − biui (3.5)

|Ei − Ej|2 = a2 (3.6)

where a is the length of each side of the triangle determined by the three

LEDs. Substituting for each Ei and Ej in eq. 3.5 and 3.6, the following system

of three quadratic equations with three unknowns is obtained

u2
1 + 2g3u1u2 + u2

2 + 2f12u1 + 2f21u2 + d2 = 0 (3.7)
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u2
2 + 2g1u2u3 + u2

3 + 2f23u2 + 2f32u3 + d2 = 0 (3.8)

u2
3 + 2g2u3u1 + u2

1 + 2f31u3 + 2f13u1 + d2 = 0 (3.9)

where

gk = −bi· bj (3.10)

fij = (Si − Sj)· bi (3.11)

d2 = (Si − Sj)2 − a2 > 0 (3.12)

An approximate solution to this system is obtained by differentiating eqs. 3.7-

3.9. After that, ui is updated using the previous solution values and subsequently

accuracy is improved with the iterative newton gradient method. Before this

method can be applied, the large inherent pincushion nonlinearity of the PSDs

must be compensated. This is done in an off-line automated calibration step

which will generate a look-up table.
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3.2 Actuation

Another key role in any haptic device is the actuation. It is responsible for send-

ing forces and torques, calculated by the physical simulation of the application

program, as accurately as possible to the user’s hand. In this case, it means

accurately computing currents to be applied to the six flotor coils to exert the

correct ”wrench” on the flotor, and hence on the manipulandum held by the user.

 

Figure 3: Magnet and coil arrangement ([23] NFS Proposal, Hollis 2003).

Figure 4 shows the arrangement of magnet assemblies and spherical coils.

There are 6 magnet assemblies, each with 4 NdFeB magnets, arranged in inner

and outer stators. Forces are generated in each of the 6 coils, producing an arbi-

trary 6-component wrench on the hemisphere and hence on the manipulandum.

The flotor is free to move in translation within the magnetic gap, and is free to

move in rotation over angles that allow the actuators to continue producing force.

To efficiently generate forces and torques in all directions, the actuators will

be arranged in a tightly-packed configuration equally spaced around the circum-

ference of the flotor with three actuators immediately below the rim and the other

three centered 45◦below the rim (figure 4). Coil positions are defined with respect

to the flotor coil coordinate frame K which differs only by a constant rotation

matrix from the flotor frame F (figure 3). The forces and torques generated on

the flotor when it is in the centered position can be expressed as

F = AI (3.13)

where F is a 6-vector force/torque wrench exerted on the flotor center, I is
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a 6-vector of the coil currents, and A the (purely geometric) 6x6 matrix which

maps them. A can be calculated from the sums of the Lorentz forces and torques.

fk = Ik ×Bk (3.14)

τk = ck × fk (3.15)

where Bk are the magnetic fields of each actuator magnet assembly and ck

are vectors to the coil centers. The air gap between the inner and outer magnet

assemblies is 34 mm to accommodate the thickness of the flotor, its range of

motion, and its curvature.
 
 

 

Figure 4: Flotor and magnet structure: (a) levitated flotor showing coils, (b)
Lorentz actuator (one of 6), (c) force generation in each actuator ([23] NFS
Proposal, Hollis 2003).

Figure 5 shows the Lorentz actuator design. The current Ik flows in the

racetrack-shaped spherical coil k and interacts with the magnetic field Bk to

produce the force fk. Forces generated on one side of the loop add with forces

generated on the other side, except for a small difference in direction due to the

coil curvature.

3.3 Control

Once the relation between the flotor frame F and the stator frame S is calculated,

simple control laws such as PD (proportional-derivative) can be used to stably

levitate and control the motion of the flotor. Since flotor linear and angular ve-

locities are not directly measurable, they must be estimated from filtered position
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measurements or from an observer. Feed-forward terms can be added for gravity

cancellation. When the device is interacting with a virtual environment, stable

control becomes much more complex.

3.4 Setup of the Magnetic Levitation Haptic Interface

Implementing virtual environments demands a very careful design of the architec-

ture of the simulation. The biggest challenges is to integrate physical simulation,

hardware control of the haptic device and graphical display of the simulation so

that high update frequencies of the haptic forces can be achieved. These three

main tasks are performed in different threads to guarantee the most possible

independence. The three threads communicate with each other which further

complicates the situation, since they are running at different update frequencies.

The graphics loop, which is responsible for displaying the simulation of the vir-

tual environment has to run at least at the screen update rate. We found out

that 100 Hz is a reasonable value for the loop frequency.

The hardware control loop is basically responsible for calculating the currents

for the coil mounted on the flotor. It transforms the force input coming from the

physical simulation to the coil current performing the forward kinematics of the

device. This control loop is actually an own application and runs on a separate

computer like already explained in the previous section. It runs at a frequency

rate of 1000 Hz in order to provide stable flotor control.

Calculating the currents for the coils is actually not very computationally in-

tensive and since it is the only calculation that has to performed on the controller

computer, which is a pentium 2.4 GHz, the execution time is not critical. It was

actually tested that this control loop can easily run at 4000 Hz.

In order to calculate the coil currents the control loop must receive the force

information from an additional application, which is the physical simulation of the

virtual environment. The two applications communicate via Remote Procedure

Call (RPC), where the device control loop employs a call back function which

is executed regularly at 1000 Hz. This call back function executes the physical

simulation for one time step and sends back the force information to the device

controller.

In order to provide a realistic feel of the virtual environment the physical

simulation for one time step must be executed within 1 ms, which can be a
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problem as the simulation of the virtual world gets complicated.

As can be seen from figure 6 the graphical scene rendering of the virtual

environment and the physical simulation run on the same computer, which is a

powerful pentium dual core with 3.2 GHz. The setup has been chosen this way

to completely separate client application from low-level hardware control.

Figure 5: Setup of the maglev haptic device.
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4 The Cube in Cube Demo

The ”Cube in Cube Demo” simulates a cube whose motion is constrained by

the walls of a larger box. By hitting the virtual walls of the outer cube, forces

and torques are generated which are applied to the flotor. This demo has already

been implemented by Berkelman in 1998 on the first generation haptic device. At

that time the demo was implemented by using force control, which means that

the hardware controller of the haptic device gets the flotor force directly from

the client program. However, to increase stability, all the demos on the second

generation Maglev have been implemented using the so called virtual coupling

method [14], in which the position of the flotor is controlled and not the force

applied to it. This guarantees stability even in the case of communication delays

between client program and hardware controller. By doing so, it is obvious that

the way forces are calculated and applied to the flotor changes dramatically. In

the next paragraphs it will be explained how this demo has been implemented

and most importantly how the virtual coupling method can be applied to this

case.

The green cube is floating in free-space and can be moved within the box

without any constraints and, since the flotor is not connected to any mechanical

device, this feels rather smooth and light. As soon as the cube touches the walls

of the bounding box, forces and torques are calculated in x, y and z direction ac-

cording to the penetration depth of the cube and the box. The forces and torques

are calculated to simulate real behavior as accurate as possible. The penetration

of the cube’s vertices into the walls of the box are multiplied by the proportional

gain of the PD controller. The resulting force, which subsequently will be applied

to the flotor, is calculated by taking the sum of the single forces coming from all

penetrations of the vertices in the x, y and z direction. To simplify the problem

only point-penetration is considered, that means that only the penetration depth

of the vertex is considered for calculating forces and torques.

For the case depicted in figure 8 the flotor force would be calculated as follows:

F1X = gXP1X F4X = gXP4X (4.1)

FX = F1X + F4X (4.2)

Fy = F1Y = gY P1Y (4.3)
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Figure 6: Screenshot of the ”Cube in Cube Demo”.

Torques are generated when the inner cube is touching the walls of the box in

a tilted pose. They are calculated by multiplying the single forces in the vertices

by their corresponding lever, which is the distance from the force’s action line to

the center of gravity of the cube.

TY = F1XL1X − F4XL4X − F1YL1Y (4.4)

In the end all the torque components in the corners of the inner cube sum

up to the total torque sent to the haptic device. Note that in the depicted case

(figure 9) only the vertices of the cube’s front face are considered for calculating

the torque. The forces F1X , F1Y and F4X also generate a torque component on

the x and z-axis. The formulas for calculating those are not stated here because
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Figure 7: Translational forces.

the levers for the x and z axis cannot be seen in the view given by figure 9.

To calculate the positions of the vertices in each simulation loop a homogenous

transformation has to be performed. This homogenous transformation can be

determined by knowing the pose of the flotor in 3D space (X,Y ,Z, α, β, γ).

A =


cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ X

sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ Y

− sin β cos β sin γ cos β sin γ Z

0 0 0 1


(4.5)

To make the user think the cube is weightless a feed-forward force in the

vertical direction is always applied to the flotor. Nevertheless, this feed-forward

force is not able to make the flotor feel inertia-free.

4.1 Balancing inertial effects of the flotor

The magnetic levitation haptic device is frictionless since it is floating in a mag-

netic field, but unfortunately the flotor has a small inertia, which contributes to
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Figure 8: Scheme illustrating how torques are calculated.

the user’s perception of the virtual world to a none negligible extend, particularly

when the flotor’s acceleration is significant. For these situations an balancing in-

ertial effect might be desired.

There are basically two different ways to cancel the flotor’s inertia. The first

solution to this problem is to mount force sensors on the flotor. The difference

between the forces applied to the flotor coming from the device, and the forces

measured between the flotor’s handle and its body, form the force coming from

the acceleration of the flotor. This component has to be added to the force which

is applied to the flotor in the subsequent time step.

F F
t = FH

t − F V E
t (4.6)

F V E′

t+1 = F V E
t+1 + F F

t (4.7)

F F
t is the force needed to accelerate the flotor at time step t. F V E

t denotes

the force coming from the physical simulation of the virtual environment. F V E′
t

is the force which finally has to be applied to the flotor in order to cancel its

inertia.

This method seams to be straight forward, however it is not very easy to

install force sensors at the flotor so that forces and torques can be measured in

all three space dimensions.



4.1 Balancing inertial effects of the flotor 17

Figure 9: Balancing inertia of the flotor with force sensors.

A much easier solution to this problem does not involve any hardware changes of

the device. By measuring the acceleration of the flotor and using Newton‘s law,

one can determine what additional force has to be applied in order to balance

inertial effect. However, for this method the inertia tensor of the flotor has to be

determined as accurately as possible, which can be very difficult, since the flotor

has a complicated geometry and its density is not homogenous.

~Fxyz = ~Ixyz~axyz (4.8)

~Tαβγ = ~Iαβγ ~̇ωαβγ (4.9)

Unfortunately this method involves a further problem. Since there are no

accelerometers installed on the flotor, the acceleration must be calculated by

deriving twice the position data. The position data is noisy and deriving it twice

can lead to an unacceptable amplification of this noise, which makes an accurate

calculation of the flotor’s inertial force problematic. Strong vibrations of the

flotor can be the consequence.

This problem can be solved by filtering the position data, which has the

disadvantage that it leads to a delay of the flotor’s response. The more values

are taken in consideration for determining the actual pose of the flotor, the more

the update frequency of the flotor force decreases, and it reaches very soon an

acceptable value. To compensate for this effect the control loop of the haptic

device must run at a higher frequency. We encountered severe limitations in
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increasing the control loop frequency above 1000 Hz, because the communication

between controller and client computer was not fast enough to run at more than

1000 Hz. A solution to this problem is to run the control loop at a higher

frequency, let’s say 4000 Hz, then apply a moving average filter with four values

of the position data on the controller side and send the position information to

the client computer with an update rate of 1000Hz. The forces of the device are

still just updated at a rate of 1000 Hz, but the position data is filtered with 4

values which decreases noise significantly.

4.2 Torque balance

The forces which are applied to the flotor coming from the interaction of the coils

and the magnetic field are not passing the center of the handle, which would be

approximately the point where the forces applied by the user’s hand are going

through. When the user applies a force to the handle and receives a reaction

force from the device, an unwanted torque is formed due to the misalignment

of the two forces, also known as a force pair. This torque causes the flotor to

tilt even if the user doesn’t want the flotor to behave like this. In other words,

when the user wants to push the flotor in a certain direction and the device

responds with the same amount of force in the opposite direction, the flotor will

be additionally tilted around the axis 90 degrees to the direction where the forces

are applied. Figure 11 illustrates this effect with forces applied in x-direction

causing a rotation of the flotor around the y-axis.

This effect can be counteracted by applying the same torque in the opposite

direction. To implement this, the lever of the force pair has to be known. As

a sufficient approximation, we consider the lever being the distance between the

point where the forces coming from the magnetic field are passing through and

the center point of the handle. This approach is only valid for slow motions, since

the inertia of the flotor is not taken in consideration. A better model would have

to include an inertia balance such as explained in the previous section. After

some trial and error it was found out that 13.3cm is a good value for the lever

LFl. However, in practice this value changes with the pose of the flotor.

Ty = Fxh (4.10)
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Figure 10: Image of tilted flotor with forces and torques.

h = 13, 3cm (4.11)

The CubeInCube demo feels much more convincing with this torque balance.

When the cube is pushed horizontally against one of the walls of the bounding

box, the flotor stays in an upright position and the user feels a pure horizontal

force.

4.3 Gaining stiffness by means of graphical cheating

The forces coming from an interaction of two bodies are calculated using the

impedance control method. Forces are proportional to the penetration level and

for this reason rigid bodies must be allowed to penetrate into each other in order

to get a measure of the force which has to be applied to them.

If the position of the cube given to the graphical representation is the real

position of the flotor in 3D space, it can be seen by the user that the two rigid

bodies, in this case the inner cube and the walls of the bounding box, can pene-

trate into each other. This looks very unnatural since the bodies do not deform

while penetrating. A common method to ”solve” this problem is by manipulat-

ing the actual pose of the two objects which are colliding. In our case the outer

box is rigid and therefore only the inner cube’s pose has to be modified before

updated. The modification of the pose of the flotor has the purpose to give the

impression that the cube is not able to penetrate into the walls of the bounding

box. This is not a trivial problem, since rotation and translation of the cube
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are interconnected. There are actually infinitely many different combinations of

rotation and translation which bring the cube to the borders of the bounding

box. Due to these complicated circumstances we limited our modification on the

translational part of the cube’s pose. For doing so the maximum penetration in

each direction x, y and z is taken to translate the cube accordingly. The following

figure 12 shows the basic concept of this position modification.

Figure 11: Graphical cheating.

It is very surprising how this little hack changes the user’s perception of

stiffness of the device. Walls are really felt as being rigid and not soft, as they

actually are, due to the limited stiffness of the device.
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5 The Texture Demo

5.1 Introduction

Simulating textures has been a main research area in the field of haptics for almost

2 decades. Many different models have been implement to simulate real texture

as accurately as possible. One main issue in haptic texture rendering is the limit

on the stiffness. It is very hard to have stable behavior of the haptic device when

the virtual surface is very rigid. This is caused due to the fast changes of the

force applied to the haptic device [16], [17]. Therefore the model representing the

texture must chosen carefully.

This chapter explains the implementation of 2 different models simulating a

texture plate with three different sine waves and one smooth surface. Additionally

the impact of rigid bodies has been simulated using a feed-forward impulse.

Figure 12: Screenshot of the ”Touch the Bunny Demo”.

We started from a CAD model of a texture plate which has 4 equal sized
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squares and each square has a different texture pattern (figure 13). Collision de-

tection can be done with two different approaches in this case. The first approach

would be a numerical method, where the triangular mesh structure of the CAD

model is used in order to determine penetrations. This is a general way of solving

the problem of collision detection with complicated bodies. It has the advantage

that it can be applied to any geometry formed by a triangular mesh and is very

flexible therefore.

The second and more customized way of solving this problem is considering

the mathematical representation of a sine wave.

h = A sin(
x+ xoff

P
2π) + yoff (5.1)

Figure 13: Parameters of the sine wave.

With this approach collision detection can be performed analytically by check-

ing the position of the haptics interaction point with respect to the sine curve.

We decided to implement this last method since it is very easy to get a first

approximation of the forces coming from the penetration of the probe into the

sine wave, by just considering the vertical penetration. This rather simple ap-

proach only involves forces in vertical direction. The penetration depth can be

determined by simply taking the difference of the height of the virtual interaction

point and the height of the value of the sine curve in that specific x-y position.

This distance is multiplied in a second step by a proportional gain which gives

the force applied to the flotor in z direction.
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Fv = pz(h− flz) (5.2)

Fv is the vertical force applied to the flotor, pz is the proportional gain for the

PD-controller for the vertical axis and flz is the actual z-position of the flotor.

Figure 14: Vertical penetration.

5.2 Calculating flotor forces in vertical and horizontal di-

rection

The approach for calculating the flotor force is very simplistic and is not able to

give a very realistic behavior of the flotor. The reason for this is the fact that

in reality, also forces in horizontal direction are present which cause the flotor to

move along the x and y direction.

It turns out that calculating the horizontal forces for our specific case is not

an easy task. An approach published by Basdogan et al [22] presents an approx-

imated method which explains the calculation of forces when penetrating into a

differentiable surface. In the first step the gradient of the sine curve is calcu-

lated in the point where the haptics interaction point is located. By knowing the

gradient, the horizontal component of the force Fh can be determined as follows.

h = A sin(
x+ xoff

P
2π) + yoff (5.3)
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Figure 15: Model for calculating force direction, Basdogan et al [22].

h′ = A cos(
x+ xoff

P
2π)

2π

P
(5.4)

Fv = pz(h− flz) (5.5)

Fh =
Fv
h′

(5.6)

A graphical representation of this gradient method is illustrated in figure 16.

It is a rather simplified approach and can lead quickly to wrong results as we

consider the following case: Unfortunately in some cases this approach is not

very accurate, especially when the stiffness of the haptic device is small and

haptic interaction point is allowed to penetrate the virtual body by a significant

amount as we see in the following example.

Suppose the haptic interaction point is moves along a trajectory which is

inclined 45 degrees with respect to the horizontal line and then hits the surface

of the sine wave as can be seen in figure 17. Since we are using the impedance

control method the virtual probe point is actually penetrating the sine wave.

If the point continues penetrating the sine wave, the force calculated with the

gradient method changes direction and it finally ends up being totally vertical

(last image of figure 17). The direction of the force should actually not change

in this example because in reality we have to consider that we do not penetrate

the sine wave, but rather deform it at a very small scale.

A more accurate model for calculating the flotor force considers the sine wave

to be a soft object. By seeing the sine wave as a deformable body, we can imagine

its behavior when touched by a point as depicted in figure 18.

Note that this model is only valid if friction is not neglected. Otherwise the
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Figure 16: Sequence showing that the gradient method is imprecise in certain
cases.

Figure 17: Deformable sine wave.

model gets much more complicated because the deformation of the sine wave also

depends on the direction of where the probe is coming from.

To calculate the flotor force, the penetration depth d has to be determined,

which is the smallest distance of the probe point to the surface of the sine wave.

By definition, this distance d lies on a normal of the sine curve. It is not trivially

easy to calculate this distance since no closed-form solution can be applied.

The normal of the sine curve is obtained by rotating its tangent by 90 degrees.

y′ = cos(x) (5.7)

And therefore the slope m of the normal is given by

m = − 1

cos(x)
(5.8)
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The normal represented as a line is given by

y = − 1

cos(x)
x+ b (5.9)

This line has to pass through the point of the probe, therefore:

yp = − 1

cos(x)
xp + b (5.10)

The y-axis intercept b can be written as

b = sin(x) +
x

cos(x)
(5.11)

Eqs. 5.10 and 5.11 give the final result

yp = − xp
cos(x)

+ sin(x) +
x

cos(x)
(5.12)

This last equation only contains the unknown variable x, which represents the

x-coordinate of the intersecting point of the normal passing through the haptic

interaction point with the sine curve (figure 19).

Figure 18: The shortest connection between the haptic interaction point and the
sine curve is normal to the curve.

As it is clear now from equation 5.12 an iterative method has to be used

in order to determine this intersecting point. Such an approach however, is

computationally not efficient, which could be a problem, since calculating the

forces for the flotor has to take less than 1 ms.



5.2 Calculating flotor forces in vertical and horizontal direction 27

An alternative to the iterative method is the use of a look-up table. This

approach is especially convenient for our case, because the sine wave is a repeating

pattern. Only one period of the values of each sine wave has to be stored in

advance in order to be able to perform collision detection. It is self-explaining

that the more values our look-up table contains, the better the shape of the sine

curve will be preserved and this results in a smoother behavior of the haptic

device when moving across the texture patterns. By using more points in the

look-up table almost an arbitrarily fine sine curve can be represented. However,

it has to be kept in mind that a bigger look-up table implies the need of doing

more comparisons during each simulation loop. For each point in the look-up

table which is possibly the closest point to the probe, a series of calculations

have to be performed in each simulation loop in order to calculate their distances

from the haptic interaction point. Note that these calculations are all operations

which are not computationally expensive compared to calculating trigonometric

functions - which would be required by an iterative method.

A huge amount of points in the look-up table could lead to unstable behaviors

hindering the control loop to run at 1000 Hz. In our case it was found out that a

table with 10000 values leads to a very smooth surface and the computation time

of the simulation loop is less than 0.05 ms on a Pentium dual core with 3.2 GHz.

Alternatively using less values and then applying an interpolation to smooth the

surface would give the same results.

For determining the closest point on the surface the distance of the considered

points to the virtual probe point have to be calculated. It is actually easier to

calculate the square of this distance.

d2
i = (xp − xi)2 + (yp − yi)2 (5.13)

The number of points which are checked in every loop are fortunately not

all 10000. It can be seen from figure 20 that in the worst case, half of all the

points in the look-up table have to be checked for being the closest point to the

probe.The interesting section of the look-up table depends on the position of the

actual probe with respect to the sine wave.

There are two points (x1, x2) to be determined which describe the interval of

the interesting points. One of these limiting points will always be the x-position
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Figure 19: Image showing sine wave with different sections and possible points
of being the closest.

of the probe point and the other one can be calculated by taking the arcsin of

the probe’s y-position.

x1 = xp (5.14)

x2 = arcsin yp (5.15)

Since the look-up table only contains the values of a sine curve within one

period, there arises a little problem when the probe is located between 0 and π
2

because the limiting value x1 would be negative. The solution to this problem

is to calculate the corresponding value for x1 in the sector 3π
2

and 2π as it is

depicted in figure 21. The same happens if the probe point falls between 3π
2

and

2π.

Figure 20: A point on a sine wave can be easily ported to its equivalent in a
different period.
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After determining the closest point on the sine wave, the force intensity is

calculated by multiplying its distance from the probe point by the proportional

gain of the PD controller. The force direction is given by the direction of the line

connecting these two points, or can also be calculated by taking the normal to

the tangent of the sine curve in the intersection point.

Figure 21: Image showing how the force is applied to the flotor.

5.3 Impact force

In spite of the remarkable high stiffness of the Magnetic Levitation Haptic Device,

surfaces are not perceived as being totally rigid. No crisp impact is noticed when

two hard bodies hit each other. When the probe is lifted up and tapped on

the surface of the texture plate, the haptic device responds with the stiffness of

25 N/mm, which is actually way below the stiffness which one would encounter

when tapping a hard surface in reality. For instance a surface made of steel would

provide a stiffness around 1000 N/mm. Such a high value leads to vibrations of

the body which in turn causes the sound of the impact. One main reason for

these vibrations is the deformation of the body itself. It will be compressed

and decompressed at a very high frequency. Different materials sound differently

when hitting each other because their vibrational behavior depends on the specific

material properties and most importantly the stiffness. Since the stiffness of the

magnetic levitation haptics device is way below the stiffness of real rigid materials,

a vibration of the flotor such as described above cannot be generated by using

the impedance control method. However, by modifying the force output of the
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controller, impact behavior of rigid bodies can be approximated. We did this by

applying a feed-forward force to the flotor whenever the virtual probe hits the

texture plate.

The feed-forward force is proportional to the cube of the impact velocity.

Fff = 50000v3
imp (5.16)

This particular function has been chosen, to make the difference between

hitting the surface harder and lighter more evident. It is for sure just an approx-

imation of a real impact, which is actually very complicated to model accurately.

Nevertheless, it turned out that this very simple approach provides a very realistic

feel and sound when the virtual probe is tapped against the texture plate.

By changing the feed-forward force, or even applying a profile of feed-forward

forces, different sounds can be generated. This has been implemented by Kuchen-

becker et.al [18].

The high feed-forward force can only be applied in the moment when the probe

hits the texture plate. To avoid that this impulse is triggered while the probe is

moving along the surface, it is essential to look at the history of the flotor’s posi-

tion. The condition for an impact force is that the probe penetrates the texture

plate in the current loop, but did not touch it in the loop before. However, this is

not enough to ensure a realistic and stable behavior of the flotor. Due to signal

noise it happens that the flotor changes between the two states of being inside

and outside the texture plate very quickly, sometimes even every simulation loop.

As a consequence the impact force is turned on and off many times consecutively,

which lead to vibrations of the flotor. Another reason for instabilities of the flotor

is the fact that the high feed-forward force (up to 120N) pushes the flotor outside

of the texture plate. Due to gravity and the users force applied to the flotor,

the handle is pushed back into the texture plate, which triggers an impact force.

This happens at quite high frequency 100-200 Hz and makes the flotor vibrate.

To overcome both problems just explained an additional timer has to be

implemented, which forbids a frequent repetition of the impact feed forward force

within a short period. After some trials it turned out, that a timeout of 70 control

loops (70 ms) is an appropriate way to get rid of the vibrations.

However, this ”hack” can cause an unrealistic behavior of the flotor. If the

user is fast enough to make the flotor touch the surface twice within 70 ms, then
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no impact force would be applied at the second contact. An average person is not

able to move its hand actively at a frequency bigger than 5 Hz. This frequency

decreases if an object with significant inertia is hold in the hand, which applies

to our case. However, the combination flotor and hand is not an active nor a

passive system, but rather a mixture of both, since the flotor is controlled by two

forces: the one generated by the magnetic field and the one generated by the

users hand. A system is considered passive when the user doesn’t actively apply

a force to the flotor. In that case much higher frequencies can be accomplished.

If the users force is governing the flotor then very low frequencies such as 5 Hz

cannot be exceeded.

This behavior can be better explained considering a drummer. When doing

a roll on a snare drum, the drummer holds his sticks very gently and barely

applies a force, and most of the actuation force of the drumstick comes from the

drum skin. This is considered to be a highly passive system. If the drummer

tries to move the stick in free space, without hitting the drum skin, much lower

frequencies can be achieved, because the system now is active.

Figure 22: Flotor position with and without impact force

Figure 23 shows the flotor position in z-axis when the flotor is tapping the

surface. The left image shows the flotor’s position while the feed-forward force

of the impact is turned off. The right image represents the case with the impact

force turned on. The encircled region clearly shows a vibrational motion with

relatively high frequency and low amplitude. This fairly short vibration causes

the crisp sound which is not distinguishable from the impact of real rigid bodies.
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The signal is very ragged because the sampling frequency of 1000 Hz is to low to

represent such a high-frequency vibration.

5.4 Collision detection of bodies with non-differentiable

surfaces

Surfaces which are not differentiable in certain areas lead to a problem in collision

detection. For example lets consider the 90-degrees edge of the texture plate as

depicted in figure 24. When sliding the probe along the horizontal part of the

surface the vertical force which is applied to the flotor is calculated with the

penetration depth d of the virtual probe. Unfortunately the distance d is not

unique as can be seen in figure. Independent from the position of the probe

there will be always two possibility for choosing d and unfortunately selecting the

smaller one is not the right approach as it becomes clear in figure 24. Suppose we

are touching the vertical part of the surface just slightly underneath the horizontal

plane. As we penetrate more and more, the distance to the horizontal surface

becomes smaller than the one to the vertical surface (last image of figure 24).

By choosing always the smaller distance, we would suddenly get a harsh force in

vertical direction which pushes the flotor out of the horizontal plane.

Figure 23: In the depicted case the penetration depth is not unique

This is an unwanted behavior and furthermore it leads to instabilities when

the distance d changes between the horizontal and the vertical component. The

harsh switch of force direction leads to vibrations of the flotor. A way to solve the

problem of collision detection with locally non-differentiable surfaces is to keep

track of the probe’s position. The point where the probe first touches the surface
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determines the force applied to the flotor. If the probe point penetrates the side

wall first, a flag is set and no matter how much the probe point penetrates the

sidewall, the direction of the force applied to the flotor will not change. The flag

will be reset to zero, when the point exits the surface on one of the sides.

This is actually very similar to the real interaction behavior of a point and a

soft body. Even if we are trying to simulate interaction of undeformable objects

it is not possible to get such behavior since the stiffness of the haptic device is

limited.

Figure 24: Probe penetrating a deformable body

Figure 25 shows the deformation of the soft object while the probe point

pushes against its side wall. In this situation, if the probe would be moved out

of the body in horizontal direction, it would return to its previous form. Now

consider the case where the probe moves out of the body in vertical direction.

As soon as the probe is outside the body the penetration flag is set to zero and

the body could now be penetrated in the vertical direction.

The approach for collision detection with locally non-differentiable surfaces

has been explained with a very special example, namely two flat surfaces which

form an angle of 90 degrees. In this case it is straightforward to distinguish

between the different penetration cases, since one is in vertical and the other one

in horizontal direction. What happens if there is a combination of flat surfaces
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which are inclined less than 90 degrees or what if these surfaces are not flat but

rather of class C1 or higher? Consider the following examples (figure 26):

Figure 25: Examples of arbitrary connections

A solution for determining the force to be applied to the flotor can be found

by generalizing the approach for the flat surfaces forming an angle of 90 degrees.

By drawing normals to the tangents of the two surfaces at their connection(figure

27), an area can be individualized. Whenever the point of the probe is located

within this area the direction of the force will depend on the history of the probe’s

position, e.g. the part of the surface which the probe point crossed most recently

determines the force.

Figure 26: Image of the generalized case

In the case where two flat surfaces form a right angle, the area where the

force depends on the history of the position is limited by the two surfaces itself,

since the normal of the tangent of the horizontal surface lies on the plane of the

vertical surface and vice versa.
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5.5 Instabilities in the corners of the texture plate

In the corners of the texture plate instabilities of the flotor are experienced which

tend to grow if the flotor is lifted up. The flotor is close to the workspace bound-

aries in the edges and comes even closer when it is lifted up. The position signal

of the photo diode arrays has some noise which propagates through the calcula-

tion of the flotor position in 3D space. It has been measured that the standard

deviation of the noise is around 1µm when the flotor is positioned at the center

of its workspace. As the flotor is located further away from this center point,

the noise of the position data increases and its standard deviation climbs up to

4µm when the flotor is close to the workspace boundary. This increasing signal

noise causes the instabilities of the flotor in these extreme points. By lowering

the gains of the PD controller these vibrations can be avoided.
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6 Touch the Bunny Demo

Figure 27: Screenshot of the ”Touch the Bunny Demo”.

This demo has been implemented to demonstrate haptics interaction of bodies

with complex geometry. A triangular mesh is used to present these complex

bodies and collision detection is performed on the basis of this mesh. Representing

complex bodies with a triangular mesh has a big advantage on the flexibility of

our application. Once the demo is implemented an arbitrary 3D geometry in the

triangular mesh format can be imported easily and used as a touchable object.

Note that, even though the texture plate was a complex body too, the regularity

of the sine wave pattern permitted to implement this demo with an analytical

approach. The texture plate can be imagined as ”hard-coded” which makes this

demo not flexible at all.
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The scope of the ”Touch the Bunny” demo is to make it possible to explore

complex geometries with the haptic device. A virtual point probe is used to scan

the surface of the complex body. This probe is rigidly attached to the flotor and

so the user can directly feel the resistance of the surface. The geometries we

are using in this new demo can consist of thousands of triangles and the biggest

challenge is to perform collision detection between the probe and the complex

geometry at a frequency rate of 1000 Hz. Initially the physical simulation engine

Open Dynamics Engine (ODE) was tried out to calculate the forces which had to

be applied to the flotor. It turned out that ODE‘s collision detection algorithm

for bodies with complex geometries is not reliable and not fast enough to keep up

with the speed of the control loop. Collision detection of bodies with a complex

geometry is in general computationally expensive and cannot be performed at a

frequency of 1000 Hz. However, the problem we had to solve was special, in the

sense that only one of the bodies had a very complex geometry and the other one

was simply a point. This special case of collision detection is not supported by

ODE, because a single point is not considered to be a 3 dimensional object. It

is possible for the probe to use a 3D object like a sphere, but that again would

make collision detection unreliable and very slow. For this reason we decided to

implement our own collision detection algorithm which is specialized for collisions

between a complex geometry and a single point.

The object we dealt with was a 3D model of a laser-scanned ceramic sculpture

of a bunny, consisting of a triangular mesh with 70000 triangles. Since the virtual

probe was just a simple point, only one triangle at the time can collide with the

probe. Once this triangle is determined it is straight forward to calculate the force

to be applied to the flotor. The orientation of the force is given by the surface

normal of the triangle and its intensity is obtained by multiplying the distance

between probe and triangle by a stiffness gain. However, it is not trivially easy

to find the right triangle and the right direction of its normal.

6.1 Collision detection algorithm

The 3D model of the bunny is stored in an .iv file which contains information

about triangle coordinates and their connection to each other. Unfortunately

the triangular mesh we were provided with, did not contain information of the

normals of the single triangles. This information is needed in order to calculate
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the forces applied to the probe. In particular the direction of the normal is

essential for determining whether the probe is inside or outside the bunny. For

example the scalar product of the normal and the vector which connects the

middle point of the triangle with the probe will be negative if the probe is inside

and the normal sticking outward, but it will positive if the probe point is not

penetrating the bunny (figure 29). According to the sign of this scalar product

and knowing the direction of the normal it can be inferred whether the probe

and bunny are colliding with each other or not.

Figure 28: Scalar product between the normal of the surface and the vector
connecting the probe point with the middle point of the triangle.

collision = true if sign(−→n ·
−−−→
MHpt) = − (6.1)

The orientation of the normal of each triangle is calculated simply by taking

the cross product of the vectors given by two sides of the triangle (figure 30).

~n = ~v1 × ~v2 (6.2)

More challenging is the determination of the direction of the normal, since

it can’t be deduce from the cross product (eq. 6.2) whether the normal points

inward or outward the bunny. It doesn’t matter what direction is picked as long

as all normals of the bunny follow the same convention, that means they have to

point or all inward or all outward.
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Figure 29: Calculating the orientation of the normal by taking the cross product
of two vectors formed by the triangle edges.

An intuitive way to solve this problem is taking one triangle and set the normal

to a certain direction. By doing some geometric calculations also the direction

of its neighboring triangles can be determined so that they conform with each

other. This method is then applied to the next neighboring triangles until the

normals of all triangles are determined (figure 31). After doing so, all triangles

conform with the normal of the first triangle. By changing the sign of the first

triangle the directions of all other triangles will be inverted when performing the

same algorithm again.

Figure 30: Determining the direction of the normal of one triangle affects the
direction of its neighboring triangles.

The method for determining the direction of the normals explained above re-

quires knowing the neighbors of each triangle in the mesh. This information is

not given by the .iv-file of the 3-dimensional bunny. An algorithm was imple-

mented which determined the neighbors of each triangle using the property that

neighboring triangles share one side. As a consequence they also must have two

points in common which is a favorable property.

The points of the triangular mesh of the bunny are organized in a big table,

where each line contains the indices of the three points forming a triangle. There-
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fore this table has three columns and as many rows as the triangular mesh has

triangles. Neighboring triangles can be find by looking for rows which have two

numbers in common (table 2).

triangle n idx 1 idx 2 idx 3

234 11238 11246 11248

235 11266 11239 11302

236 10456 10511 10501

...
...

...
...

1349 11239 11281 11302

Table 2: Table showing how the triangular mesh is organized.



6.1 Collision detection algorithm 41

The .iv-file contains a second table which stores the coordinates of the different

triangles. The number of lines of this array corresponds to the number of points

in the triangular mesh. The values in the first column represent the indices of

the mesh points used in the first array to describe which points form a triangle.

triangle n idx 1 idx 2 idx 3

11241 0.5893 43.9867 13.2864

11239 0.6010 44.0451 13.3735

11240 0.5870 44.1353 13.4210

...
...

...
...

11302 0.6112 44.0538 13.3922

Table 3: Table showing how the mesh points are stored.
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6.2 Algorithm for finding neighboring triangles

Flow chart 1: Algorithm for finding neighboring triangles.
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Since we know that each pair of neighboring triangles has two points in com-

mon, we have to take each triangle and check in the array if there is another row

which has two equal vertex indices. This algorithm would have a complexity of

O(n2) which is not acceptable in our case, because the triangular mesh contains

70000 triangles. To reduce complexity the algorithm only checks against the

triangles which do not yet have three neighbors, by giving each triangle in the

array an additional integer number storing the number of neighboring triangles

found. Only triangles with this number smaller than 3 are considered for further

searching.

Note from the flow chart that only two points of the starting triangle (index i)

are necessary to be compared with the vertices of the remaining triangles (index

g). Since neighboring triangles share two points, at least one out of two points of

each triangle has to occur in each set. From the following figure it can be deduced

that, using this approach, finding the first common vertex of two triangles implies

checking 6 different configurations, instead of 9 (figure 32).

Figure 31: Scheme explaining how indices are used to find corresponding neigh-
boring triangle.

Once two triangles which share one vertex, are found, a further examination

for an eventual second common point is performed. In this second step four

different possibilities have to be checked figure 33.

If finally a pair of neighboring triangles is identified, the information of the

respective neighbor is stored next to each triangle’s vertex information. That
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Figure 32: If one common vertex is found, 4 different checks are performed to see
if there is a second point shared by both triangles.

includes the triangle number and the indices of the shared points. Additionally a

counter variable is used, providing a termination condition of the algorithm, once

all three neighbors of a triangle are found. In the end the array of the triangular

mesh has been extended by 10 columns:

triangle n idx 1 idx 2 idx 3 Neighb 1 Vrtx1 N1 Vrtx2 N1 Neighb 2 . . .

234 11238 11246 11248 1345 11346 11250 1350 . . .

235 11266 11239 11302 1349 11239 11302 1353 . . .

236 10456 10511 10501 1298 11001 11003 1323 . . .

...
...

...
...

...
...

...
... . . .

1349 11239 11281 11302 235 11239 11302 876 . . .

Table 4: Table representing the triangular mesh containing information about
triangle neighbors.

6.3 Determining normals of each triangle

After identifying the neighbors of each triangle, the next step is to calculate

orientation and direction of the triangles’ normal. Taking the cross product of

the vectors determined by two edges of a triangle gives the orientation of the

normal of that particular triangle.

However the cross product does not give information about the direction of the
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normal which is essential for the following collision detection. All normals should

follow the same convention, e.g. they whether point all inwards or all outwards

the bunny. Once the direction of the normal of one triangle has been determined,

it is possible to determine also the normal’s direction of its immediate neighbors.

This was initially implemented using a recursive approach. Unfortunately it

turned out that the stack of the computer was not big enough. Additionally

we ran into memory problems, because up to 70000 copies of the same function

were open at the same time. For these reasons a procedural approach has been

implemented, since it has no disadvantage in terms of complexity with respect

to a recursive approach. The idea of accomplishing the task with a procedural

algorithm is to start from an arbitrary neighbor of the first triangle, determine

the sign of its normal according to the direction of the first triangle’s normal and

then repeat the same with an arbitrary neighbor of this new triangle.

This approach is not very elegant since the forming chain of triangles with

the normal determined is totally random, which implies that it could get stuck

somewhere, before all normals are calculated. This happens for example when

the chain closes itself like it is depicted in figure 34.

Figure 33: The forming chain can close itself.

In this case the algorithm checks for new neighbors of the last triangle and

continues with spreading out. At one point the algorithm will get stuck when for

example it hits a triangle whose neighbors have all their normals already deter-

mined. Consequently the first triangle in the list which hasn’t the direction of its

normal already set, but has at least one neighbor whose normal is determined, is

taken as new starting triangle for the algorithm.
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Figure 34: Flowchart explaining how the algorithm looks for new triangles when
it gets stuck.

6.4 How to determine the direction of the normal

Once a pair of triangles is identified which has one triangle’s normal determined,

a certain procedure is followed to calculate the normal’s direction of the second

triangle.

The first step is to cut the surfaces of the two neighboring triangles by a plane

which is perpendicular to the side connecting the two triangles (first image figure

36). All 4 points of the triangle pair are projected onto this plane.

The two points A and B which are shared by both triangles overlay on the

plane, therefore the projection only shows three points. By connecting P1′ with

A′ and P2′ with A′ a certain angle is formed (right image figure 36).

For getting consistency of the normal’s direction, their projections (which are

actually represented in real length on the plane) have to lie in the same circle

sector formed by the previously determined vectors P1′A′ and P2′A′. In other
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Figure 35: The normal of two neighboring triangles have to lie in the same circle
sector.

words if the normal of the first triangle lies in the green circle sector, then the

normal of its neighbor has to be also in the green sector. If the new calculated

normal lies in the opposite angle sector, its sign must be inverted. To determine

whether the normals are in the same angle sector, the scalar product between the

normal of one triangle with the vector representing the cut of the surface of the

other triangle is calculated for both combinations. If the scalar products have

the same sign, then the normals are located in the same angle sector, otherwise

they are not.

sign(
−→
N1·
−−−→
P2′A′) = sign(

−→
N2·
−−−→
P1′A′) (6.3)

6.5 Runtime collision detection algorithm

The previous sections described the pre-calculation steps which have to be per-

formed when the ”Touch the Bunny” demo is started. Once the normal of the
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triangles are determined, the simulation is ready to start. Collision detection is

performed during runtime, which means that the performance of the algorithm

has to be very high in order to guarantee a fast calculation of the flotor forces

(less than 1 ms). This implies that it has to be highly optimized since collision

detection is very expensive when the shape of the bodies are complicated. Our

case involves collision detection of a complex object with a simple point. This

circumstance simplifies the problem significantly and it remains to find the right

triangle with which the probe is colliding. An intuitive solution for this problem

would be calculating the distances of the middle points of all triangles to the

point of the probe and pick the closest triangles for further investigation. This is

too expensive in terms of computation, since the complex object we are dealing

with is formed by 70000 triangles. The algorithm would not be fast enough to

keep up with the 1000 Hz of the control loop. To overcome this problem only a

few triangles namely the ones which are in the immediate proximity of the probe

are checked for eventual collision. This is done by considering only triangles

which are located in the inside of a virtual cube around the probe point (figure

37). Picking the right size of this cube is very critical for the performance of our

algorithm. If the cube is too big and too many triangles are located at its inside,

the computation time becomes quickly unacceptable. On the other hand, if the

size of the cube was chosen too small, and too few triangles are considered at

each time step, the algorithm could fail at detecting an eventual collision. Even

if the cube has at least the size to bound the biggest triangle of the mesh, the

algorithm could still fail detecting collisions, because of the limited update rate

of the position information (1000 Hz). If the probe is moved at relatively high

velocity so that its position varies a lot from one time step to another, it could

happen that in one time step the probe is outside the bunny and no middle point

of a triangle is located inside the checking box. In the consequent time step the

probe has penetrated the bunny, so that again no middle point of the triangle is

located in the inside of the bunny, then the algorithm will not trigger the signal

for collision. In other words, while crossing the surface no triangle has ever been

considered to be colliding with the probe.

To summarize choosing the box too big is critical for computation time.

Choosing it too small can lead to the failure of the collision detection algorithm.

After a while of trial and error we found an appropriate size of the cube which
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worked in all cases. The computer we were implementing this demo actually al-

lowed us to use a very big cube size, so that 1000 triangles can easily be checked

in every loop - which was not necessary.

Figure 36: Only triangles falling into the bounding box around the point probe
are considered for collision detection.

By using the approach described above, at each loop the middle points of all

triangles would have to be checked, if they fall into this bounding box or not.

This is obviously computationally too intense since we have to check x, y and z

coordinate of 70000 triangle middle points. Additionally there are many other

operations which have to be executed altogether in less than 1 ms. An easy but

very effective approach of making this procedure remarkably faster is achieved

by sorting one coordinate of the triangle’s middle points beforehand. On this

sorted list of, lets say x-coordinates, a binary sorting algorithm is applied twice

in order to find the lower and upper bound of the x-coordinate which fall into the

bounding box. Now the remaining part of the body which is further investigated

for collision, can be imagined as a slice.

All the triangles falling into this slice are further investigated for satisfying the

condition of being within the y and z bound of the checking box. Unfortunately

the list of y and z coordinates falling into this sliced section are not sorted and

therefore all points have to be checked. But there is good news, only one of the

two remaining coordinates has to be checked first. By doing so, the search space

has again dramatically decreased. After this, the last coordinate of just a few

triangles has to be examined if they are located in the inside of the bounding

box.
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Figure 37: Flow chart showing the efficient selection of triangles which fall into
the bounding box

Now the very few triangles (5-10), which satisfy the condition of being located

within the box, can be checked for collision. The further examination involves

projecting the point of the probe onto all planes which are defined by these

triangles located in the bounding box. Thereby the 3 points of each triangle form

an individual plane.

The probe point has to be projected normally to each plane which is done by

first projecting the line connecting middle point of the triangle with the point of

the probe, onto the normal of the triangle. This projection is found by calculating
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the scalar product of the triangle’s normal N and the vector MP connecting the

probe point and the middle point of the same triangle.

A new vector SN is formed by multiplying the scalar calculated before with

the normal of the triangle. The final projection of the probe point onto the plane

is obtained by subtracting this vector from MP and by adding the vector OT

connecting the triangle’s middle point with the origin.

Once we know the exact coordinates of the projected point, it remains to

check whether it falls into the region of the triangle on the plane or not (figure

39). If the projection is located in the inside of the triangle, the force would be

determined by its normal in the case of a collision.

Figure 38: The point projected onto the plane of the triangles can be located
inside or outside the triangle.

By connecting this projected point with the three vertices of the triangle 6

angle are formed. Summing up these angles gives a conclusion about the location

of the projected point. This sum gives exactly 180 degrees if the point stays

inside the triangle. For points which stay outside the triangle the sum is bigger

than 180, as becomes clear with figure 40.

Due to numerical discretization the summed angle is not perfectly 180 degrees

for points which stay inside a triangle. Therefore the triangle with the smallest

angle is chosen to be the one potentially colliding with the probe point. For this

triangle finally the scalar product between the normal and the vector connecting

the middle point of the triangle and the probe point is calculated. If the sign

of this scalar product changes within two subsequent simulation steps, then a

collision of the probe and the bunny has occurred. The magnitude of the force
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Figure 39: By summing up the depicted angles it is easy to determine whether
the point is inside or outside the triangle.

applied to the flotor is proportional to this scalar product. The orientation and

direction of the force is given by the normal of the triangle.

Figure 40: Scheme showing how the penetration force is finally calculated.

Unfortunately the projected point could fall in more than one triangle. But

the good thing is that the scalar product between the normal and the line con-

necting middle point and the haptic interaction point will only change its sign

when applied to the triangle with which the probe is actually colliding.
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6.6 Smoothing the surface

The bunny is formed by triangles which are connected to each other at their

edges. This forms angular transitions between the triangles, which cause a not

smooth behavior of the force applied to the flotor when the probe is sliding from

on triangle to its neighbor.

To avoid the bunny’s surface to appear rough, due to this phenomena de-

scribed above, an interpolation is applied to the colliding triangle and its neigh-

bors. This approach can be also imagined as a Gaussian smoothing of an image,

where each pixel value is determined by its original value and the values of its

neighbors.

Whenever the probe penetrates the body, the force which is applied to the

flotor is a linear combination of the the normals given by the triangle currently

colliding with the probe and its three neighbors (figure 42).

Figure 41: Scheme showing how the surface is smoothed with a linear combination
of the normals of the neighboring triangles.

~FFl = a ~N0 + b ~NN1 + c ~NN2 + d ~NN3 (6.4)

This method can be also extended to a larger number of neighbors. However,

it has the drawback that the surface of the bunny is smoothed too much and fine

details such as small ”valleys” are not perceived anymore. After doing some trial

and error, it was found out that taking only the direct neighbors of each triangle

is the best tradeoff between smoothing and keeping the details of the object’s

surface.
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6.7 Enlarging the workspace of the haptic device

The workspace of the magnetic levitation haptic device is approximately a cube

with 14 mm side length. Scaling the bunny down so that it fits this rather small

region would be disadvantageous for the resolution. It would be impossible to feel

fine details of the bunny’s surface. To overcome this issue an algorithm has been

implemented which allows changing the relative pose of the device’s workspace

with respect to the pose of the complex body. This makes it possible that the

complex object, in this case the bunny, can be explored in different locations. For

doing so the user chooses between positioning mode and touching mode by hitting

the left button of the flotor. The positioning mode first navigates the flotor to

the zero position of its workspace. It controls this zero position with rather low

proportional gains (1 N/mm for translation and 3 Nm/rad for rotation). When

the user now pushes the handle away from the zero position, the amount of

offset is taken to calculated the motion speed for the axis which has the offset,

in rotation and translation. An appropriate deadband has to be chosen in order

to prevent the body from moving when no force is applied. This would happen

because of the steady-state error of the pose of the flotor, since no integral gain

is used in the controller. A further reason for the deadband is the fact that the

position signal of the flotor has some noise (2− 4µm standard deviation).

The amount of offset is packed into a homogeneous transformation matrix as

follows:

Tnew = Told∗THB = Told∗


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ X

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ Y

−sβ cβsγ cβsγ Z

0 0 0 1

 (6.5)

Told = Tnew (6.6)

The angles α, β and γ represent the angle offset of the flotor with respect to

the upright position and X, Y and Z denote the translational offset. The matrix

THB is multiplied by the old homogenous transformation, which represented the
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Figure 42: This scheme shows the relation between the bunny coordinate frame,
the work space and the camera coordinate frame.

position of the haptic’s workspace with respect to the world frame in the previous

simulation step. Figure illustrates the relation between the single coordinate

frames. TCH represents the relation between the coordinate frame of the camera

and the work space of the haptic device. It is obviously a constant homogenous

transformation.

The triangular mesh of the bunny is actually fixed and the pose of its inertial

coordinate frame expressed in the world frame is a constant homogeneous trans-

formation. Instead the homogeneous transformation matrix, which describes the

relative pose of the flotor’s workspace with respect to the world frame and the

bunny THB is not constant and changes due to the multiplication of Told∗T . This

convention has been chosen, because it wouldn’t be feasible to rotate the actual

bunny around. In this case in each time step all the coordinates of the triangle

vertices and the triangle middle points would have to be recalculated according

to the new transformation. Note that this process doesn’t have to be performed

at 1000 Hz, because there is no force feedback in the positioning mode. To guar-

antee a smooth visualization of the demo when the device’s workspace changes

pose, the homogenous transformation of the mesh would have to be performed
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at 100 Hz, which is double the update frequency of the screen. However, recalcu-

lating the coordinates of the triangular mesh is computationally so intense that

it wouldn’t be even close to such a required speed.
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7 Summary and Contributions

Three virtual environments have been implemented for the purpose to show the

performance of the new magnetic levitation haptic device. A major new aspect

of the implementation of these demos was the use of a structured application

programming interface, which takes care of the low-level hardware control. This

allows the user to concentrate on the higher level issues of the virtual environment

to be implemented. Since the API was still in development when these three

demos have been implemented the purpose of the underlying project was also to

test and debug this API.

Contemporaneous with the completion of this project, the new magnetic lev-

itation haptic device has been presented officially at a press release at Carnegie

Mellon University. Furthermore we exposed the device at the international haptic

symposium in Reno. At both events the demos were used to highlight the special

characteristics of the new maglev haptic device.

7.1 Future Work: Physical simulation using a physics en-

gine

Simulating the physical phenomena occurring in a virtual environment is one

of the most challenging components of haptic rendering. Collision detection is

very complicated when virtual environments contain a large number of bodies,

or when the bodies have a complicated geometry. If both is the case, then the

problem gets almost impossible to solve at high update rates, which are needed

in haptic rendering. When simulating complex environments, it is very useful

using a physical simulation engine such as Open Dynamics Engine (ODE) or

Ageia PhysX. These simulation engines have the advantage that their collision

detection algorithm is optimized in terms of computational complexity. A further

convenience is their integrability in a haptic rendering loop. It is fairly straight

forward to implement the calculation of the forces which are applied to the haptic

device, even if the virtual environment is sophisticated or contains a numerous

amount of bodies interacting with each other. However, the performance of haptic

rendering demos using such a physics engine is not as good as in demos which

use a customized implementation of the physical simulation. This is caused by

the fact that virtual environments using physics engines cannot make use of very
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high stiffness values. To find the reason for this problem one has to analyze the

way physics engines simulate the dynamics of bodies in the virtual environment.

When two bodies collide with each other a force is calculated on the basis of

the penetration depth of the two bodies. In a further step this force is applied

to the two bodies. All the forces applied to a body are summed together and

cause the body to translate and rotate. Depending on the inertial properties

of the body, an acceleration of the body determines velocity and position when

integrated over time.

a = F/m (7.1)

v =
1

m

∫
Fdt+ v0 (7.2)

This implies that the position of a bodies in the virtual world is indirectly

given by the forces applied to it and that means that the flotor’s position cannot

be directly assigned to the position of a virtual object.

However in haptics simulation there should be a rigid connection between

the handle of the device and the virtual object this handle represents in the

virtual world. In other words, it is desired to assign the position of the bodies in

the virtual world directly. This is not possible with todays physics engines and

therefore a virtual spring-damper system has to be inserted between the flotor

and the object in the virtual world. Figure () illustrates this connection; note

that the damping value dv and spring constant kv do not have anything to do

with the controller gains of the haptic device.

In a first moment this configuration seams to be the perfect solution to our

problem, because apparently the stiffness of this virtual spring can be set in

theory to an infinitely high value and we would end up with a rigid connection

between handle and the corresponding body in the virtual world.

By moving the flotor around, the virtual spring of this system will be com-

pressed due to the inertia of the object in the virtual world to which the handle

is attached. The compression of the spring induces a force which ”pushes” the

object in the desired direction. The higher the stiffness of this virtual spring the

better the virtual object follows the motion of the handle of the haptic device.

By setting it to infinite, the virtual body is rigidly attached to the handle and
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Figure 43: Spring-damper connection between flotor and virtual world object.

follows perfectly the motion of the handle, which is exactly the behavior we want

to achieve. Even by setting the stiffness of the virtual spring to a very high value,

would make the connection so rigid, that no real difference to the approach where

the position of the virtual object is set directly, would be recognizable. Unfortu-

nately this is not possible, since the damping of this virtual coupling would have

to be incremented too, otherwise high frequency vibrations of both, the virtual

body and the handle would be the consequence.

A very high proportional gain demands a relatively high differential gain. In a

first consideration this does not seem to be a problem, but the truth is that we are

actually limited in setting this damping gain. The reason for the limitation is the

noise of the position information of the handle. The damping force is calculated

by multiplying the first derivative of the position with the damping gain. The

differentiation of a signal with noise leads to value which is actually even noisier

then the source signal. It is straight forward that when multiplying this ”jumpy”

signal by a high damping gain, which is needed when using high stiffness, the

noise of the force output to the flotor is not acceptable.

There is an additional aspect which causes instabilities when setting very high

values for the pd-controller gains. Unfortunately the proportional force and the

damping force are calculated in two different time instances of the system. The

velocity is the mean velocity between the actual position and the position in the
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previous time step. Besides from being affected by noise, this is not the velocity

of the flotor in the current loop, but the proportional force calculated is related

to the current state of the system.

Both problems just explained can be improved by increasing the frequency of

the control loop. Position information can be filtered better and the approxima-

tion of the current velocity of the flotor is more precise.

Due to the limitation explained above, virtual environments implemented

using physics engines are ”softer” than demos in which the implementation of

the physical simulation is done by the user. In the second case the user can

rigidly attach the flotor to the body in the virtual world and a spring-damper

connection, between the flotor and the virtual body system, which is sensitive to

signal noise, is not needed anymore.

If a physical simulation engine would include the possibility to directly control

the pose of bodies in its virtual world, then the problem explained above is

overcome. In that case implementing virtual environments can be done using

physical simulation engines without giving up performance.

However, if the position of virtual bodies is set directly, it is not allowed to

apply additional forces to these bodies. More specifically, in one simulation loop

it would be forbidden applying forces and setting positions to a body at the

same time. This is hard to imagine since bodies apply forces to each other when

colliding, if at the same time the position of a body is changed, because it is rigidly

attached to the flotor, then the system is considered to be over-constrained. This

contradiction leads to the fact that the problem can only be solved if the forces

calculated in the physics engine are applied to the flotor and not to the body

to which the flotor is attached. The virtual body attached to the flotor should

get the position of the flotor directly. Velocity and acceleration of this body is

determined by the motion of the flotor and is not directly influenced by the other

bodies in the virtual world. Forces coming from the body attached to the flotor

and applied to other bodies are calculated by the change of impulse of the flotor.

F =
mdv

dt
(7.3)

As can be seen from eq. 7.3 the inertia tensor of the flotor has to be known

in order to calculate F.

The approach described above demands significant changes to the physical
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simulation engine, which is unfortunately not possible with Ageia PhysX, since

this library is not open source. Open Dynamic Engine on the other hand is an

open source library and could be accustomed to the use in haptics rendering.
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A Cube in Cube demo

The following code includes all the functions necessary to run the demo. It

consists of two threads which are running contemporaneously and initialization

of the haptic device which is executed at the beginning of the demo.

The graphics thread is responsible for updating the scene at a frequency of

100 Hz. The control loop (”getPos”) is called by the controller callback function

(”tickCallback”) 1000 times a second. It provides the new forces to be applied

to the flotor.

/*********************** Cube in Cube demo **************************/

#include <pthread.h>

#include <sys/time.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <math.h>

#include <time.h>

#include <stdint.h>

#include <ctype.h>

// Graphics libraries needed

#include <Inventor/sensors/SoTimerSensor.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDrawStyle.h>

#include <Inventor/nodes/SoLightModel.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoOrthographicCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTranslation.h>

#include <Inventor/nodes/SoScale.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/nodes/SoText2.h>

#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoEventCallback.h>

#include <Inventor/events/SoKeyboardEvent.h>

// Haptic device library

#include "ml_api.h"

// haptic controller ip-address

char * HOST_NAME = "192.168.0.3";
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ml_device_handle_t device_hdl;

// half side length of the cube

const float sc=4.0;

// half side length of the outer box

const float sb=6.0;

// translation and rotation of inner cube

SoTransform *transCube;

SoSFRotation *rot;

SoSeparator *txt, *txt2;

SoSeparator *rootCube;

SoXtExaminerViewer *myViewer;

int setflag=0;

// For some unknown reason the device applies a torque on the z-axis

// whenever the device outputs a force in z direction. I have

// implemented a hack to correct this unwanted torque. The user can

// decide whether using this torque correction or not. As default the

// correction is active.

bool torque_flag=true;

// Actual and desired pose of the device.

ml_position_t position, despos;

ml_gain_vec_t gains;

// position of the inner cube

float b[3];

// Client control loop

void *controlBox(void *arg);

void stopDemo();

// graphics callback function to update the scene

void graphics_callback(void *data, SoSensor *sense);

void myKeyPressCB(void *userData, SoEventCallback *eventCB)

{

const SoEvent *event = eventCB->getEvent();

if (SO_KEY_PRESS_EVENT(event, P)) {

stopDemo();

//printf("you pressed the button");

eventCB->setHandled();

}

}

SoSeparator *text2disp(const char *str[], int sizestr)

{

SoSeparator *txt =new SoSeparator;
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SoOrthographicCamera *ocam = new SoOrthographicCamera;

//ocam->position.setValue(10,100,10);

txt->addChild(ocam);

SbViewVolume vv=ocam->getViewVolume();

SbVec3f pt = vv.getPlanePoint(0.0f, SbVec2f(0.0f, 0.95f));

SoText2 *text = new SoText2;

//const char *str[]={"Press ’Esc’ to change camera view manually","", "Press ’i’ to disable impact force","", "Press ’p’ to quit"};

//const char * str2[3] = {str[0],str[1],str[2]};

text->string.setValues(0, sizestr/sizeof(char*), str);

text->justification = SoText2::LEFT;

SoTransform *texttrans = new SoTransform;

texttrans->translation.setValue(pt[0]-0.5,pt[1],0);

//printf("this pt0 %f\n", pt[0]);

txt->addChild(texttrans);

txt->addChild(text);

return txt;

}

int main(int argc, char **argv)

{

if (argc>1){

char * arg_str = argv[1];

if (!strcmp(arg_str, "notorque"))

torque_flag=false;

}

//initialization of the control loop thread

pthread_t thread;

pthread_create(&thread,NULL,controlBox,NULL);

//initializing graphics window

Widget myWindow = SoXt::init(argv[0]);

if (myWindow == NULL) exit (1);

//graphics callback for graphics update (100 Hz)

SoTimerSensor *tSense = new SoTimerSensor(graphics_callback,NULL);

tSense->setInterval(0.01);

tSense->schedule();

//scene definition

rootCube = new SoSeparator;

rootCube->ref();

SoEventCallback *myEventCB = new SoEventCallback;

myEventCB->addEventCallback(SoKeyboardEvent::getClassTypeId(),myKeyPressCB);

rootCube->addChild(myEventCB);
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//camera

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

rootCube->addChild(myCamera);

myCamera->position.setValue(0.0, -20.0, 15.0);

myCamera->orientation.setValue(1.0, 0.0, 0.0, 2*M_PI/3);

//light

rootCube->addChild(new SoDirectionalLight);

SoFont *myFont = new SoFont;

myFont->name.setValue("Arial");

myFont->size.setValue(24.0);

rootCube->addChild(myFont);

const char *str[]={"Press ’p’ to quit"};

txt = text2disp(str, sizeof(str));

//graphics for the bounding box

SoSeparator *boxSep = new SoSeparator;

SoDrawStyle *boxSty = new SoDrawStyle;

boxSty->style = SoDrawStyle::LINES;

boxSty->lineWidth = 2.0;

SoLightModel *boxLight = new SoLightModel;

boxLight->model = SoLightModel::BASE_COLOR;

SoCube *boxCube = new SoCube;

boxCube->width=2*sb;

boxCube->height=2*sb;

boxCube->depth=2*sb;

boxSep->addChild(boxSty);

boxSep->addChild(boxLight);

boxSep->addChild(boxCube);

//graphics for the inner cube

SoSeparator *cubeSep = new SoSeparator;

SoMaterial *cubeMaterial = new SoMaterial;

cubeMaterial->diffuseColor.setValue(0.0, 0.9, 1.0);

transCube = new SoTransform;

rot = new SoSFRotation;

SoCube *cubeCube = new SoCube;

cubeCube->width=2*sc;

cubeCube->height=2*sc;

cubeCube->depth=2*sc;

cubeSep->addChild(transCube);

cubeSep->addChild(cubeMaterial);

cubeSep->addChild(cubeCube);

//adding bounding box and inner cube to the root scene

rootCube->addChild(boxSep);

rootCube->addChild(cubeSep);
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rootCube->addChild(txt);

//viewing the scene with the Examiner Viewer

//SoXtExaminerViewer *

myViewer = new SoXtExaminerViewer(myWindow);

SbVec2s wsizer;

wsizer.setValue(1900, 1200);

myViewer->setSceneGraph(rootCube);

myViewer->setTitle("Cube in the Box");

myViewer->setSize(wsizer);

myViewer->show();

myViewer->viewAll();

SoXt::show(myWindow);

SoXt::mainLoop();

}

// this is the callback function for the graphics (100 Hz update frequency)

void graphics_callback(void *data, SoSensor *sense)

{

static int activetxt=1;

static const char *str[]={"Press ’p’ to quit"};

static const char *str2[]={"Press ’Esc’ and then ’p’ to quit"};

//position update of the inner cube

transCube->translation.setValue(b[0], b[1], b[2]);

//orientation update of the inner cube

transCube->rotation.setValue(rot->getValue());

if ((myViewer->isViewing()==true) && (activetxt!=2)){

txt2 = text2disp(str2, sizeof(str2));

rootCube->replaceChild(6, txt2);

//printf("number of children after first switch %d \n", rootSinus->getNumChildren());

activetxt=2;}

if ((myViewer->isViewing()==false) && (activetxt!=1)){

txt = text2disp(str, sizeof(str));

rootCube->replaceChild(6, txt);

activetxt=1;}

}

// getPos calculates the desired pose of the flotor. This demo uses virtual coupling and therfore

// forces and torques are communicated to the server in terms of a position offset and gains for

// the PD controller. Virtual coupling has been chosen for this demo because it is more stable

// than conventional force control. When using the force control method the controller for the

// haptic device has to get force information from the client precisely at 1000 Hz, otherwise
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// the device would get unstable. But when the controller is provided with desired position

// information for the flotor, the client side does not necessarily have to run at 1000 Hz.

// In that case the haptic device’s update rate is just lower, but does not cause any instabilities.

// In this function virtual coupling is not used directly. First I calculate all the forces

// which are applied to the flotor, so that components from the single axes can be added together.

// In a second step these force values and a set of controller gains are used to calculate the

// new desired position of the flotor.

int getPos(ml_position_t & position)

{

static int i, j;

static float orient[3];

static float sgam, cgam, sbet, cbet, salp, calp;

static float a11, a12, a13, a21, a22, a23, a31, a32, a33;

static float theta, inv2st;

static float w;

static float p[8][3];

static float pt[8][3];

static float ptotal[3];

static float torquebalance=0;

static ml_position_t force;

static SbVec4f locVert[8];

static SbVec4f globVert[8];

for(i=0; i<3; i++)

position.values[i]*=1000;

for(i=3; i<6; i++)

position.values[i]*=(360/(2*M_PI));

// maxpos and maxneg contain the maxium penetration values of the cube in the bounding box for

// each axis, on the positive and negative side.

float maxpos[3]={0,0,0};

float maxneg[3]={0,0,0};

// Transformation of angle from degrees to radians with additional scale factor to amplify rotation,

// so that the user thinks the rotation of the flotor is bigger than it actually is.

for (i=0; i<3; i++)

orient[i]=4*M_PI*position.values[i+3]/360;

// Calculation of the rotation matrix. For some reason the homogeneous transformation doesn’t work

// in Coin3d, the translational part is not added to the position. Therefore rotation and

// translation has to be treated separately. The values which represent the position in the matrix

// are set to zero (a14=a24=a34=0).

sgam = sin(orient[0]);

cgam = cos(orient[0]);

sbet = sin(orient[1]);

cbet = cos(orient[1]);

salp = sin(orient[2]);
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calp = cos(orient[2]);

a11 = calp*cbet;

a12 = calp*sbet*sgam-salp*cgam;

a13 = calp*sbet*cgam+salp*sgam;

a21 = salp*cbet;

a22 = salp*sbet*sgam+calp*cgam;

a23 = salp*sbet*cgam-calp*sgam;

a31 = -sbet;

a32 = cbet*sgam;

a33 = cbet*cgam;

// Conversion of a rotation from three given rotation angles to a rotation vector.

// This conversion has to be done because Coin3d only accepts this kind of notation

// for rotations.

theta = acos((a11+a22+a33-1)/2.0);

inv2st = 1/(2*sin(theta));

rot->setValue(SbVec3f((a32-a23)*inv2st,(a13-a31)*inv2st,(a21-a12)*inv2st),theta);

SbMatrix mat(a11, a12, a13, 0, a21, a22, a23, 0, a31, a32, a33, 0, 0, 0, 0, 1);

// Generating the vertices’ positions of the inner cube with respect to its coordinate frame.

// The origin is located at the center of gravity of the cube.

locVert[0].setValue(sc, -sc, sc, 1);

locVert[1].setValue(sc, -sc, -sc, 1);

locVert[2].setValue(-sc, -sc, -sc, 1);

locVert[3].setValue(-sc, -sc, sc, 1);

locVert[4].setValue(sc, sc, sc, 1);

locVert[5].setValue(sc, sc, -sc, 1);

locVert[6].setValue(-sc, sc, -sc, 1);

locVert[7].setValue(-sc, sc, sc, 1);

// Computation of the coordinates of the 8 vertices with respect to the world frame using

// the rotation matrix "mat" set up previously.

for (i=0; i<=7; i++)

{

mat.multVecMatrix(locVert[i], globVert[i]);

globVert[i].getValue(p[i][0], p[i][1], p[i][2], w);

// As mentioned above, the position of the center of gravity of the cube

// has to be added to the coordinates of the vertices since the matrix ’mat’

// doesn’t contain this information.

for (j=0; j<3; j++)

p[i][j]+=position.values[j];

}

// Setting all force values to zero.

for(i=0; i<=5; i++)

force.values[i]=0;
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// Setting single penetration values of inner cube into bounding box to zero.

for(i=0; i<=7; i++)

{

for(j=0; j<3; j++)

pt[i][j]=0.0;

}

// Setting total penetration value to zero.

for(j=0; j<3; j++)

ptotal[j]=0.0;

//Calculation of the penetration of each vertice in x, y and z

for(i=0; i<=7; i++)

{

for(j=0; j<=2; j++)

{

if(p[i][j]>sb)

{

pt[i][j]=-p[i][j]+sb;

//Calculating the maximum penetration on the positive side.

if (pt[i][j]<maxpos[j])

maxpos[j]=pt[i][j];

}

if(p[i][j]<-sb)

{

pt[i][j]=-p[i][j]-sb;

//Calculating the maximum penetration on the negative side.

if (pt[i][j]>maxneg[j])

maxneg[j]=pt[i][j];

}

}

}

// Calculating the sum of all penetrations in x, y and z

for(i=0; i<=7; i++)

{

for(j=0; j<3;j++)

ptotal[j]+=pt[i][j];

}

// Initializing gain values of the controller.

for (i=0; i<6; i++)

{

gains.values[i].p = 0;

gains.values[i].d = 0;

gains.values[i].ff = 0;

}

gains.values[2].ff=5.0;
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// Setting gains for PD controller only if there is a penetration.

if(fabs(ptotal[0])!=0.0)

{

gains.values[0].p=15.0;

gains.values[0].d=0.03;

gains.values[4].d=0.2;

}

if(fabs(ptotal[1])!=0.0)

{

gains.values[1].p=15.0;

gains.values[1].d=0.03;

gains.values[3].d=0.2;

}

if(fabs(ptotal[2])!=0.0)

{

gains.values[2].p=30.0;

gains.values[2].d=0.03;

}

// Calculating forces for x, y and z axes of the flotor. It has to be divided by four because

// the penetration of the four vertices were summed together previously.

for(j=0; j<3;j++)

force.values[j]=ptotal[j]*gains.values[j].p/4;

// The torque for each axis is computed by the sum of the penetrations of the vertices multiplied

// by half of the side length of the inner cube. The different signs for the single penetration

// values are due to the fact that penetrations in different positions and different orientations

// cause either negative or positive torque on the relative axis.

ptotal[3]=(-pt[0][1]-pt[0][2]+pt[1][1]-

pt[1][2]+pt[2][1]-pt[2][2]-

pt[3][1]-pt[3][2]-pt[4][1]+

pt[4][2]+pt[5][1]+pt[5][2]+

pt[6][1]+pt[6][2]-pt[7][1]+

pt[7][2]);

ptotal[4]=(pt[0][0]-pt[0][2]-pt[1][0]-

pt[1][2]-pt[2][0]+pt[2][2]+

pt[3][0]+pt[3][2]+pt[4][0]-

pt[4][2]-pt[5][0]-pt[5][2]-

pt[6][0]+pt[6][2]+pt[7][0]+

pt[7][2]);

ptotal[5]= (pt[0][0]+pt[0][1]+pt[1][0]+

pt[1][1]+pt[2][0]-pt[2][1]+

pt[3][0]-pt[3][1]-pt[4][0]+
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pt[4][1]-pt[5][0]+pt[5][1]-

pt[6][0]-pt[6][1]-pt[7][0]-

pt[7][1]);

// The gains for rotation are only turned on if the torque is different than zero.

if(fabs(ptotal[3])!=0.0)

{ gains.values[3].p=10.0;

gains.values[3].d=0.2;}

if(fabs(ptotal[4])!=0.0)

{gains.values[4].p=10.0;

gains.values[4].d=0.2;}

if(fabs(ptotal[5])!=0.0)

{gains.values[5].p=10.0;

gains.values[5].d=0.2;}

// Computing torques. The unit of the gain values for rotation is by default Nm/radians. For consistency

// they have to be transformed to Nm/degrees. 0.7 is an additional scale factor.

for(j=3; j<6; j++)

force.values[j]=-0.7*ptotal[j]*gains.values[j].p*2*M_PI/360;

// Since the forces on the flotor are not applied on the center of the handle,

// but rather 13.3 mm underneath that point, an additional torque has to balance this effect.

force.values[4]+=force.values[0]*0.133;

force.values[3]-=force.values[1]*0.133;

// To make sure that the flotor isn’t getting out of range of the optical sensors a virtual

// limit is set to the flotor’s orientation.

static const float virtlim=4.0;

for (i=3; i<6; i++)

{

if (position.values[i]>virtlim)

{

force.values[i]-=(position.values[i]-virtlim);

gains.values[i].d=0.15;

gains.values[i].p=50.0;

}

if (position.values[i]<-virtlim)

{

force.values[i]-=(position.values[i]+virtlim);

gains.values[i].d=0.15;

gains.values[i].p=50.0;

}

}

// As mentioned above, the device generates a small torque around the z axis whenever

// there is a force in that direction. It has been found out that the relation between

// this force and torque can be described very precisely by a linear function. The

// parameters for this linear function might vary from device to device.

if (torque_flag){
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if (force.values[2]>0.0){

torquebalance=force.values[2]*0.045+0.2;

gains.values[5].p=10;

}

else if (force.values[2]<0.0){

torquebalance=force.values[2]*0.018+0.2;

gains.values[5].p=10;

}

else{

torquebalance=0.2;

gains.values[5].p=10;}

}

// Virtual coupling: The forces calculated above are now converted to a position offset,

// given the gains of the PD controller.

for (i=0; i<3; i++)

despos.values[i]=position.values[i]+force.values[i]/gains.values[i].p;

for (i=3; i<6; i++)

despos.values[i]=position.values[i]+force.values[i]/(gains.values[i].p*2*M_PI/360);

despos.values[5]+=torquebalance;

// Calculating the position of the cube for the graphical representation. The position of the cube

// in the graphics doesn’t always correspond to the flotor’s position. When the cube is penetrating

// the outer box, the graphics show the cube just on the boundary of the box, so the user has the

// impression that he or she is not able to penetrate the walls of the box. Since the haptic

// device has a finite stiffness it is not possible to achieve such a behaviour.

for(i=0; i<6; i++)

{

if (gains.values[i].p<0.01)

despos.values[i]=position.values[i];

}

for (i=0; i<3; i++)

b[i]=position.values[i]+maxpos[i]+maxneg[i];

for(i=0; i<3;i++)

despos.values[i]/=1000;

for(i=3; i<6;i++)

despos.values[i]*=(2*M_PI/360);

for(i=0; i<3;i++){

gains.values[i].p*=1000;

gains.values[i].d*=1000;

}

}
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// This callback function is called by the controller at a frequency rate of 1000 Hz

int tick_callback_handler(ml_device_handle_t device_hdl, ml_position_t *position2)

{

static int result;

if(setflag==0){

// Calculation of the new desired pose of the flotor

getPos(* position2);

// Set gains for the pd controller and set the desired position.

ml_SetGainVecAxes(device_hdl, ML_GAINSET_TYPE_NORMAL, gains);

result = ml_SetDesiredPosition(device_hdl, despos);

}

return 0;

}

static const int BUF_SIZE = 256;

static char cmdbuf[BUF_SIZE];

// This is the control function. It initializes communication between client and host computer.

// Furthermore the flotor is floated to the origin of the haptic device.

void *controlBox(void *arg)

{

int status = 0;

int result;

int i;

// Gains of all axes are set to zero.

for (i=0; i<=5; i++)

{

gains.values[i].p = 0;

gains.values[i].d = 0;

gains.values[i].ff = 0;

}

//connect to the device

if(ml_Connect(&device_hdl, HOST_NAME) != ML_STATUS_OK)

{

printf("Unable to connect to MLHI device! Check name or IP address!");

exit(-1);

}

printf("Connected. Device is taking off...");

// Flotor takes off, e.g. moves to zero position. The gains which are used are preset in the function.

if ((result = ml_Takeoff(device_hdl)) != ML_STATUS_OK)

{

printf("Error while taking off");

ml_Disconnect(device_hdl);

exit(-1);
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}

// Waiting for the flotor to take off

sleep(2);

printf("Success");

bool done =false;

// Menu loop. The user can choose one of two options: start demo and stop demo and land. When stopping

// the demo the flotor should be held by one hand and the cube shouldn’t touch the walls of the

// cube(zero gains), otherwise instabilities could occur.

//do

//{

printf("Press 1 to start demo \n");

printf("Press 2 to stop and shut down \n");

printf("\n");

//reads keyboard input

/* if (fgets(cmdbuf, BUF_SIZE, stdin) == NULL)

{

printf("Invalid input\n");

continue;

}

char key =cmdbuf[0];

*/

//if(key == ’1’)

//{

// Register the callback function which is called by the controller at

// a frequency rate of 1000 Hz.

ml_RegisterCallbackTick(device_hdl, tick_callback_handler);

//}

}

// Setting flag for stopping the program

/* else if (key == ’2’)

done=true;

else

printf("Not a valid input!!");

} while(!done);

*/

void stopDemo()

{

int status = 0;

int result;

int i;

setflag=1;

// usleep(2000);

// When the program is shutting down the tick callback should be unregistered

gains.values[0].p =gains.values[1].p =2000;
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gains.values[2].p = 8000.0;

gains.values[3].p =gains.values[4].p =gains.values[5].p = 30.0;

gains.values[3].d =gains.values[4].d =gains.values[5].d = 0.30;

gains.values[0].d = gains.values[1].d = gains.values[2].d =30;

gains.values[2].ff = 4.8;

ml_SetGainVecAxes(device_hdl, ML_GAINSET_TYPE_NORMAL, gains);

printf("here1\n");

ml_UnregisterCallbackTick(device_hdl);

sleep(1);

printf("here2\n");

result = ml_Takeoff(device_hdl);

//printf("** FINISHING cube in cube demo **\n\n");

// "liftoff" again just to zero position

//printf("taking off...\n");

//if ((result = ml_Takeoff(device_hdl)) != ML_STATUS_OK)

//printf("MLHI Error occurred while landing flotor.\n");

sleep(2);

//printf("Success.\n\n");

//printf("6. Done! Disconnect from MLHI..."); fflush(stdout);

// When the process ends the device has to be disconnected. The controller can not be

// connected to more than one process at a time.

printf("ends successful 1\n");

if ((result = ml_Disconnect(device_hdl)) != ML_STATUS_OK)

{

printf("MLHI Error occurred while disconnecting from MLHI.\n");

status = -1;

}

printf("ends successful\n");

exit(status);

}
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B Texture Plate Demo

The following function (”getPos”) is the most important part of the the Texture

Plate demo. It calculates all the forces to be applied to the flotor and is called

by the ”tickCallback” function at a frequency rate of 1000 Hz. The structure of

the program is similar to the one used in the Cube in Cube demo and therefore

the initialization of the haptic device and the graphics threads are not present in

this appendix.

/************************ calculate flotor forces ***************************/

int getPos(ml_position_t & position)

{

static int i=0;

static float pg=8.34;

static int qnow;

static ml_position_t positionold=position;

pb.pos[0]=b[0]=pg*position.values[0];

pb.pos[1]=b[1]=pg*position.values[1];

pb.pos[2]=b[2]=position.values[2];

impact[0]=impact[1]=impact[2]=0;

for (i=0; i<6; i++)

{

pb.vel[i]=(position.values[i]-positionold.values[i])*1000;

pb.counter[i]++;

pb.force[i]=0.0;

}

positionold=position;

//filter();

qnow=findquad();

sideimpact();

if (pen(qnow))

insideimpact(&qnow);

setsinepar(qnow);

calcpenforce(qnow);

//calcfric(&pb, qnow);

gains.values[0].p=gains.values[1].p=gains.values[2].p=0.0;
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gains.values[0].d=gains.values[1].d=gains.values[2].d=0.0;

gains.values[3].p=gains.values[4].p=gains.values[5].p=50.0;

gains.values[3].d=gains.values[4].d=gains.values[5].d=0.3;

gains.values[2].ff=3.0;

for (i=0; i<3; i++)

{

if (pb.force[i]!=0.0)

{

gains.values[i].p=5.0;

gains.values[i].d=0.02;

despos.values[i]=position.values[i]+pb.force[i]/gains.values[i].p;

}

}

for (i=0; i<2; i++)

{

if (impact[i])

{

gains.values[4-i].d=0.7;

gains.values[i].d=0.07;

}

}

if (impact[2])

gains.values[2].d=0.065;

qold=qnow;

despos.values[3]=despos.values[4]=despos.values[5]=0.0;

}

/**************************** moving average filter for position data ***********************/

void filter()

{

static float v[fil][3];

static int count=0;

static float velsum[3]={0,0,0};

int i, j;

if (count>=pb.num)

{

for(i=0; i<3; i++)

{

pb.vel[i]+=(pb.vel[i]-v[pb.num-1][i])/pb.num;

v[0][i]=pb.vel[i];

}

for(i=pb.num-1; i>0; i--)
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{

for(j=0; j<3; j++)

v[i][j]=v[i-1][j];

}

}

count+=1;

}

/**************************** finding the pattern on which the probe is located ********************/

int findquad()

{

static int quad;

if ((pb.pos[0]>=0.0) && (pb.pos[1]>=0.0))

quad=1;

else if ((pb.pos[0]<0.0) && (pb.pos[1]>=0.0))

quad=2;

else if ((pb.pos[0]<0.0) && (pb.pos[1]<0.0))

quad=3;

else if ((pb.pos[0]>=0.0) && (pb.pos[1]<0.0))

quad=4;

return quad;

}

/*************************** detecting if the probe is penetrating the surface *********************/

bool pen(int qnow)

{

static float penet=0.0;

static float h;

if (qnow==2){

h=0.15*sin((pb.pos[0]+5.6)*2*M_PI/4.0)-0.16;

penet=h-pb.pos[2];}

else if (qnow==3){

h=0.2*sin((pb.pos[1]+0.375)*2*M_PI)-0.16;

penet=h-pb.pos[2];}

else if (qnow==4){

h=0.0;

penet=h-pb.pos[2];}

if (penet>0.0)

return true;

else

return false;

}

/********** calculates the impact force when the flotor is hitting the inner walls of the plate **********/

void insideimpact(int *qnow)

{
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static float iimpgain=1.0;

static float sgain=1.0;

if (qold!=*qnow)

{

if ((qold==1) && (*qnow==4))

{

pb.force[1]+=-sgain*pb.pos[1];

b[1]=0.0;

if ((pb.counter[1]>implim) && (pb.outside[1]==1))

{

pb.force[1]+=iimpgain*fabs(pb.vel[1]*pb.vel[1]*pb.vel[1]*pb.vel[1]/scale);

pb.counter[1]=0;

impact[1]=1;

}

*qnow=1;

pb.outside[1]=0;

}

else if ((qold==1) && (*qnow==2))

{

pb.force[0]+=-sgain*pb.pos[0];

b[0]=0;

if ((pb.counter[0]>implim) && (pb.outside[0]==1))

{

pb.force[0]+=iimpgain*fabs(pb.vel[0]*pb.vel[0]*pb.vel[0]*pb.vel[0]/scale);;

pb.counter[0]=0;

impact[0]=1;

}

*qnow=1;

pb.outside[0]=0;

}

else if ((qold==1) && (*qnow==3))

{

pb.force[0]+=-sgain*pb.pos[0];

pb.force[1]+=-sgain*pb.pos[1];

b[0]=b[1]=0.0;

if ((pb.counter[0]>implim) && (pb.outside[0]==1))

{

pb.force[0]+=iimpgain*fabs(pb.vel[0]*pb.vel[0]*pb.vel[0]*pb.vel[0]/scale);

pb.counter[0]=0;

impact[0]=1;

}

if ((pb.counter[1]>implim) && (pb.outside[1]==1))

{

pb.force[1]+=iimpgain*fabs(pb.vel[1]*pb.vel[1]*pb.vel[1]*pb.vel[1]/scale);

pb.counter[1]=0;

impact[1]=1;

}

*qnow=1;
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pb.outside[0]=0;

pb.outside[1]=0;

}

}

qold=*qnow;

}

/******* coordinate transformation for the pattern rotated by 45 degrees with respect to the other patterns *********/

void cotrans(float alpha)

{

pb.pos[0]=pb.pos[0]*cos(alpha)+pb.pos[1]*sin(alpha);

pb.pos[1]=-pb.pos[0]*sin(alpha)+pb.pos[1]*cos(alpha);

}

void setsinepar(int qnow)

{

static float ab=16.3*cos(-M_PI/4)+23*sin(-M_PI/4);

if (qnow==2)

{

sine.xoff=5.6;

sine.yoff=0.16;

sine.amp=0.15;

sine.per=4.0;

sine.n=1;

}

else if (qnow==3)

{

sine.n=1;

sine.xoff=0.375;

sine.yoff=0.16;

sine.amp=0.2;

sine.per=1.0;

cotrans(M_PI/2);

sine.n=2;

}

else if (qnow==1)

{

sine.xoff=-ab+0.5;

sine.yoff=2.53;

sine.amp=0.1;

sine.per=2.0;

cotrans(-M_PI/4);

sine.n=0;

}

}
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/******************* calculates the look-up table for sine waves *****************/

void calclookup()

{

static int i, j;

static float a, b;

for (j=0; j<3; j++)

{

setsinepar(j+1);

for (i=0; i<lookt.sizet; i++)

{

a=lookt.x[j][i]=sine.per*(float)i/((float)lookt.sizet-1);

b=lookt.y[j][i]=sine.amp*sin(lookt.x[j][i]*2*M_PI/sine.per);

lookt.ds[i]=10000;

}

}

}

/************** calculates the flotor force according to its penetration into the surface **************/

void calcpenforce(int quad)

{

static float h, pen, xnew, ynew, x1, x2, min, rep;

static int idx1, idx2, idxmin, i;

static float it2=(float)lookt.sizet;

static float vimpgain=20.0;

static float vergain=10.0;

static float horgain=1.0;

static float pforce;

int g=sine.n;

if (quad==4)

h=0.0;

else

h=sine.amp*sin((pb.pos[0]+sine.xoff)*2*M_PI/sine.per)-sine.yoff;

pen=h-pb.pos[2];

if (pen>0.0)

{

if (quad==4)

{

min=pen;

pb.force[2]=vergain*min;

}

else

{

ynew=pb.pos[2]+sine.yoff;
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b[2]=h;

xnew=fmod(pb.pos[0]+sine.xoff, sine.per);

if (xnew<0.0)

xnew=sine.per+xnew;

if (xnew<=sine.per/4)

{

x2=xnew;

x1=sine.per*asinf((h-pen+sine.yoff)/sine.amp)/(2*M_PI);

}

if ((xnew>sine.per/4) && (xnew<=sine.per/2))

{

x1=xnew;

x2=sine.per/2-sine.per*asinf((h-pen+sine.yoff)/sine.amp)/(2*M_PI);

}

if ((xnew>sine.per/2) && (xnew<=3*sine.per/4))

{

x1=xnew;

x2=sine.per/2+fabsf(sine.per*asinf((h-pen+sine.yoff)/sine.amp)/(2*M_PI));

}

if ((xnew>3*sine.per/4) && (xnew<sine.per))

{

x2=xnew;

x1=sine.per-fabsf(sine.per*asinf((h-pen+sine.yoff)/sine.amp)/(2*M_PI));

}

if (pb.pos[2]<-(sine.amp+sine.yoff))

{

if (xnew<=sine.per/4)

{

x1=-sine.per/4;

x2=xnew;

}

if ((xnew<=3*sine.per/4) && (xnew>sine.per/4))

{

x1=xnew;

x2=3*sine.per/4;

}

if ((xnew<=sine.per) && (xnew>3*sine.per/4))

{

x1=3*sine.per/4;

x2=xnew;

}

}

idx1=(int)floor(x1*it2/sine.per);

idx2=(int)ceil(x2*it2/sine.per);

if (idx2>=lookt.sizet)

idx2=lookt.sizet-1;
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if (idx1>=0)

{

for (i=idx1; i<=idx2;i++)

lookt.ds[i]=(lookt.x[g][i]-xnew)*(lookt.x[g][i]-xnew)+(lookt.y[g][i]-ynew)*(lookt.y[g][i]-ynew);

min=lookt.ds[idx1];

idxmin=idx1;

for (i=idx1+1; i<=idx2; i++)

{

if (lookt.ds[i]<min)

{

min=lookt.ds[i];

idxmin=i;

}

}

}

else if (idx1<0)

{

idx1=lookt.sizet+idx1;

for (i=idx1; i<lookt.sizet;i++)

lookt.ds[i]=(lookt.x[g][i]-sine.per-xnew)*(lookt.x[g][i]-sine.per-xnew)+(lookt.y[g][i]-ynew)*(lookt.y[g][i]-ynew);

for (i=0; i<=idx2;i++)

lookt.ds[i]=(lookt.x[g][i]-xnew)*(lookt.x[g][i]-xnew)+(lookt.y[g][i]-ynew)*(lookt.y[g][i]-ynew);

min=lookt.ds[idx1];

idxmin=idx1;

for (i=idx1+1; i<lookt.sizet; i++)

{

if (lookt.ds[i]<min)

{

min=lookt.ds[i];

idxmin=i;

}

}

for (i=0; i<=idx2; i++)

{

if (lookt.ds[i]<min)

{

min=lookt.ds[i];

idxmin=i;

}

}

}

rep=sqrt(1+sine.amp*cos(lookt.x[g][idxmin]*2*M_PI/sine.per)*sine.amp*cos(lookt.x[g][idxmin]*2*M_PI/sine.per));
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pforce=horgain*(-min*sine.amp*cos(lookt.x[g][idxmin]*2*M_PI/sine.per)/rep);

pb.force[2]+=vergain*min/rep;

min=0.0;

if (quad==2)

pb.force[0]+=pforce;

if (quad==3)

pb.force[1]+=pforce;

if (quad==1)

{

pb.force[1]+=-pforce/sqrt(2);

pb.force[0]+=pforce/sqrt(2);

}

}

if ((pb.counter[2]>implim) && (pb.outside[2]==1))

{

pb.force[2]+=vimpgain*fabs(pb.vel[2]*pb.vel[2]*pb.vel[2]*pb.vel[2]/scale);

pb.counter[2]=0;

impact[2]=1;

}

pb.outside[2]=0;

}

else

pb.outside[2]=1;

}

/********** calculates the impact force when the probe hits the outer side walls of the plate **********/

void sideimpact()

{

static float simpgain=1.0;

static float sgain=1.0;

static int i;

static float edge=8.34*6.0;

for(i=0; i<2; i++)

{

if (pb.pos[i]>edge)

{

pb.force[i]+=sgain*(edge-pb.pos[i]);

b[i]=edge;

if ((pb.outside[i]==1) && (pb.counter[i]>implim))

{

pb.force[i]+=-simpgain*fabs(pb.vel[i]*pb.vel[i]*pb.vel[i]*pb.vel[i]/scale);

pb.counter[i]=0;

impact[i]=1;
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}

pb.outside[i]=0;

}

else if (pb.pos[i]<-edge)

{

pb.force[i]+=sgain*(-edge-pb.pos[i]);

b[i]=-edge;

if ((pb.outside[i]==1) && (pb.counter[i]>implim))

{

pb.force[i]+=simpgain*fabs(pb.vel[i]*pb.vel[i]*pb.vel[i]*pb.vel[i]/scale);

pb.counter[i]=0;

impact[i]=1;

}

pb.outside[i]=0;

}

else

pb.outside[i]=1;

}

}

C Touch the Bunny Demo

The following code contains only the characteristic parts of the Touch the Bunny

demo. It is therefore not sufficient to run the demo. The section of the main

function represents how the triangular mesh is extracted from the .iv-file and

stored in a data structure. The ”graphicsCallback” function is responsible for

the scene update. The most important thing is the calculation of the workspace

and camera positions as they are changed during the positioning mode.

The function ”calcnorm” calculates orientation and direction of the normals.

”Searchpart” is responsible for finding the three neighboring triangles of each

triangle. ”Mergesort” sorts the x-coordinate of the triangle middle points.

/*************************************************************/

int main(int argc, char **argv)

{

...

SoInput myInput;

if (! myInput.pushFile("/usr0/obmartin/bunny.iv"))

printf("Cannot open file!\n");

fileContents = SoDB::readAll(&myInput);
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if (fileContents == NULL)

printf("File doesn’t contain anything!\n");

float val[3];

float v1[3], v2[3], no[3];

const SbVec3f *Vector=new SbVec3f;

triangles tmp;

int a,b,g,i,j;

int stmp, s1, s2;

SoCoordinate3 *Coords=new SoCoordinate3;

Coords=(SoCoordinate3 *) fileContents->getChild(0);

SoIndexedFaceSet *Idx=(SoIndexedFaceSet *)fileContents->getChild(3);

const int32_t * pointer1=Idx->coordIndex.getValues(0);

int NumVert2=Coords->point.getNum();

int NumTri2=(3*Idx->coordIndex.getNum()/4)/3;

for(i=0; i<NumVert2; i++)

{

Vector=Coords->point.getValues(i);

Vector->getValue(val[0], val[1], val[2]);

for(j=0; j<3; j++)

vert[i][j]=val[j];

}

for(i=0; i<NumTri2; i++)

{

for(j=0; j<3; j++)

{

tri[i].vidx[j]=*pointer1;

pointer1++;

}

pointer1++;

}

for(i=0; i<NumTri2; i++)

{

for(j=0; j<3; j++)

tri[i].mid[j]=(vert[tri[i].vidx[0]][j]+vert[tri[i].vidx[1]][j]+vert[tri[i].vidx[2]][j])/3;

}

for(i=0; i<NumTri2; i++)

{

numbers[i].val=tri[i].mid[0];

numbers[i].idx=i;

}

mergesort(0, NumTri2-1);
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triangles temp2[NumTri2];

for(i=0; i<NumTri2;i++)

temp2[i]=tri[numbers[i].idx];

for(i=0; i<NumTri2;i++)

tri[i]=temp2[i];

searchpart();

calcnorm();

pthread_t thread;

pthread_create(&thread,NULL,controlBox,NULL);

...

}

// this is the callback function for the graphics (100 Hz update frequency)

void graphics_callback(void *data, SoSensor *sense)

{

static float dbandp=0.0005;

static float srotX, srotY, srotZ;

static int flagf=0;

static float scalexy=10.0;

static float scalez=50.0;

static float dband=0.04;

static float sgam, cgam, sbet, cbet, salp, calp;

static float a11, a12, a13, a21, a22, a23, a31, a32, a33;

static int count, hflag;

static SbVec4f srcrpoint;

static SbVec4f dstrpoint;

srcrpoint.setValue(-0.002760, -0.043475, 0.137835, 1);

static SbMatrix matoldrot(1,0,0,0,

0,1,0,0,

0,0,1,0,

0,0,0,1);

SbMatrix camtrans(1,0,0,0,

0,cos(-0.8),-sin(-0.8),0,

0,sin(-0.8),cos(-0.8),0,

-0.002760, -0.143475, 0.117835, 1);

SbMatrix camtrans2(1,0,0,0,

0,1,0,0,

0,0,1,0,
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0,0,0,1);

SbMatrix camtrans3(1,0,0,0,

0,1,0,0,

0,0,1,0,

0,0,0,1);

SbMatrix trans(1,0,0,0,

0,1,0,0,

0,0,1,0,

0,0,0,1);

transsphere->translation.setValue(projcheat[0], projcheat[1], projcheat[2]);

if (penc==1)

matsph->diffuseColor.setValue(1.0, 0.0, 0.0);

else

matsph->diffuseColor.setValue(1.0, 1.0, 0.0);

if (penc2==1)

bxmat->diffuseColor.setValue(1.0, 0.0, 0.0);

else

bxmat->diffuseColor.setValue(0.0, 0.8, 0.8);

static int i;

static float posimp[3];

for(i=0;i<3;i++)

posimp[i]=tri[numbertri].mid[i]*50;

transspherei->translation.setValue(posball2[0], posball2[1], posball2[2]);

if (fabs(posX)<dbandp)

posX=0.0;

else

{

if(posX>dbandp)

posX-=dbandp;

else if(posX<-dbandp)

posX+=dbandp;

}

if (fabs(posY)<dbandp)

posY=0.0;

else

{

if(posY>dbandp)

posY-=dbandp;

else if(posY<-dbandp)

posY+=dbandp;

}

if (fabs(posZ)<dbandp)
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posZ=0.0;

else

{

if(posZ>dbandp)

posZ-=dbandp;

else if(posZ<-dbandp)

posZ+=dbandp ;

}

if (fabs(rotX)<dband)

rotX=0.0;

if (fabs(rotY)<dband)

rotY=0.0;

if (fabs(rotZ)<dband)

rotZ=0.0;

sgam = sin(rotX/scalexy);

cgam = cos(rotX/scalexy);

sbet = sin(rotY/scalexy);

cbet = cos(rotY/scalexy);

salp = sin(rotZ/scalez);

calp = cos(rotZ/scalez);

float sdf=Fraum[0];

a11 = calp*cbet;

a12 = calp*sbet*sgam-salp*cgam;

a13 = calp*sbet*cgam+salp*sgam;

a21 = salp*cbet;

a22 = salp*sbet*sgam+calp*cgam;

a23 = salp*sbet*cgam-calp*sgam;

a31 = -sbet;

a32 = cbet*sgam;

a33 = cbet*cgam;

static SbVec3f tr, sc, cr, csc;

static SbRotation ro, sb, co, csb;

static float scdown=0.5;

SbMatrix mat(a11, a12, a13, 0, a21, a22, a23, 0, a31, a32, a33, 0, -scdown*posX, -scdown*posY,-scdown*posZ, 1);

if (trsf2==0)

mat.multRight(matold);

matold.getTransform(tr, ro, sc, sb);

SbRotation sbrot2=SbRotation(matold);

matoldglob=matold;

matoldrot=matold;

matold=mat;

camtrans.multRight(mat);

camtrans2.multRight(matoldrot);

camtrans.getTransform(cr, co, csc, csb);

SbRotation sbrotc=SbRotation(camtrans);
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transbox->translation.setValue(tr);

tr.getValue(trv[0], trv[1], trv[2]);

transbox->rotation.setValue(sbrot2.getValue());

sbrot2.getValue(sbr[0], sbr[1], sbr[2], sbr[3]);

pltr->translation.setValue(tr);

pltr->rotation.setValue(sbrot2.getValue());

pltr2->translation.setValue(tr);

pltr2->rotation.setValue(sbrot2.getValue());

pltr3->translation.setValue(tr);

pltr3->rotation.setValue(sbrot2.getValue());

pltr4->translation.setValue(tr);

pltr4->rotation.setValue(sbrot2.getValue());

tr.getValue(offb[0], offb[1], offb[2]);

matold.multVecMatrix(srcrpoint, dstrpoint);

myCamera->position.setValue(cr);//dstrpoint.getValue());

myCamera->orientation.setValue(sbrotc.getValue());

count++;

}

int getPos(ml_position_t & position)

{

static float edge[3];

static float force[3];

static float tsh=0.005;

static int val, val2, midd, idxmin, count, i, j, countold, idxfound, idxminold;

static int low = 0;

static int high = 69451;

static float distsq[NumTri];

static float d[3][3];

static float penv[3];

static float scap, scale;

static float fn[3];

static bool stop;

static bool probimphist;

static typedef struct {

int id;

float sc;

} shist;

static shist idcs[NumTri];

static shist idcsold[NumTri];

static float dmin=1000;

static int counterha, counterha1, counterha2;

idxmin=0;

count=0;

static float w;

static int first;

static float sgam, cgam, sbet, cbet, salp, calp;

static float a11, a12, a13, a21, a22, a23, a31, a32, a33;



C Touch the Bunny Demo 94

static float balancefx, balancefy;

static float xyrlim=0.1;

static float zrlim=0.1;

rotX=rotY=rotZ=0.0;

sgam = sin(rotX);

cgam = cos(rotX);

sbet = sin(rotY);

cbet = cos(rotY);

salp = sin(rotZ);

calp = cos(rotZ);

float sdf=Fraum[0];

a11 = calp*cbet;

a12 = calp*sbet*sgam-salp*cgam;

a13 = calp*sbet*cgam+salp*sgam;

a21 = salp*cbet;

a22 = salp*sbet*sgam+calp*cgam;

a23 = salp*sbet*cgam-calp*sgam;

a31 = -sbet;

a32 = cbet*sgam;

a33 = cbet*cgam;

for(i=0; i<6; i++)

despos.values[i]=0.0;

balancefx=balancefy=0.0;

static float ab[4][4];

static float ac[4][4]={{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {offset[0], offset[1], offset[2], 1}};

static int ctrsf;

static int firstt=1;

if(trsf2==1)

{

ctrsf++;

matold.setValue(ac);

if(ctrsf==1)

{

trsf2=0;

ctrsf=0;

}

}

if (trsf==1)

{

posX=0.5*position.values[0];

posY=0.5*position.values[1];

posZ=0.5*position.values[2];

rotX=1.5*position.values[3];

rotY=1.5*position.values[4];

rotZ=4*position.values[5];
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for(i=0; i<6;i++)

despos.values[i]=0.0;

gains.values[3].p=gains.values[4].p=1.5;

gains.values[5].p=5.0;

gains.values[5].d=gains.values[3].d=gains.values[4].d=0.150;

gains.values[2].ff=4.8;

if(first==1)

gains.values[0].p=gains.values[1].p=gains.values[2].p=0.0;

first=0;

for(i=0;i<2; i++)

{

if (gains.values[i].p<1500)

{

gains.values[i].p+=5;

gains.values[i].d=30;

gains.values[4-i].d=0.6;

}

}

if (gains.values[2].p<3000)

{

gains.values[2].p+=10;

gains.values[2].d=30;

}

balancefx=position.values[0]*gains.values[0].p*0.13/gains.values[4].p;

balancefy=position.values[1]*gains.values[1].p*0.13/gains.values[3].p;

}

if(trsf==0)

{

posX=posY=posZ=0.0;

rotX=rotY=rotZ=0.0;

first=1;

static SbVec3f tr, sc;

static SbRotation ro, sb;

SbMatrix transw(a11, a12, a13, 0,

a21, a22, a23, 0,

a31, a32, a33, 0,

offb[0], offb[1], offb[2], 1);

static SbMatrix transwinv(a11, a12, a13, 0,

a21, a22, a23, 0,

a31, a32, a33, 0,

0, 0, 0, 1);

static SbVec4f srcpoint;
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static SbVec4f dstpoint;

srcpoint.setValue(position.values[0]*100*boxscale,position.values[1]*100*boxscale, position.values[2]*100*boxscale,1);

for(i=0; i<3; i++)

position.values[i]*=1000;

static SbVec3f fr, fsc;

static SbRotation fo, fsb;

static float fa, fb, fc;

SbMatrix frotat;

matoldglobinv=matoldglob;

fr.setValue(0,0,0);

fsc.setValue(1,1,1);

matoldglob.multVecMatrix(srcpoint, dstpoint);

matoldglobinv=matoldglobinv.inverse();

SbRotation sbrotf=SbRotation(matoldglobinv);

frotat.setTransform(fr, sbrotf, fsc);

dstpoint.getValue(pt[0], pt[1], pt[2], w);

stop=false;

val=val2=-1;

dmin=1000;

low=0;

high=69451;

static int countw1;

static int countw2;

countw1=countw2=0;

while (1)

{

if(low>high)

break;

countw1++;

midd = (low+high)/2;

if (tri[midd].mid[0]>=(pt[0]-tsh))

{

if (tri[midd-1].mid[0]>(pt[0]-tsh))

high = midd-1;

else

{

val=midd;

break;

}

}

else if (tri[midd].mid[0]<(pt[0]-tsh))

{

if(tri[midd+1].mid[0]<(pt[0]-tsh))

low = midd+1;

else

{

val=midd;
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break;

}

}

break;

}

}

if (val<0)

val=0;

stop=false;

low = val;

high = 69451 - 1;

while (1)

{

if(low>high)

break;

countw2++;

midd = (low+high)/2;

if (tri[midd].mid[0] >= (pt[0]+tsh))

{

if (tri[midd-1].mid[0]>=(pt[0]+tsh))

high = midd-1;

else

{

val2=midd;

break;

}

}

else if (tri[midd].mid[0]<(pt[0]+tsh))

{

if(tri[midd+1].mid[0]<(pt[0]+tsh))

low = midd+1;

else

{

val2=midd;

break;

}

}

break;

}

}

if (val2<0)

{

if (tri[NumTri2].mid[0]<=pt[0]+tsh)

val2=69451;

}

static bool probimp=false;
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static bool fidx=false;

probimp=false;

count=0;

if (val2!=-1)

{

for(i=val; i<=val2; i++)

{

if(tri[i].mid[1]>pt[1]-tsh)

{

if(tri[i].mid[1]<pt[1]+tsh)

{

if(tri[i].mid[2]>pt[2]-tsh)

{

if(tri[i].mid[2]<pt[2]+tsh)

{

idcs[count].id=i;

count++;

probimp=true;

}

}

}

}

}

}

static int impflag=0;

static float bunny[3];

static float sign=1;

static float sctot[3][2], lengthn2n;

static float vett[3][3];

static int vt, countproj, k;

static float tempp[3];

static float norm2norm[3];

static float pointproj[3];

static float pprojsc;

static int n2n;

static float ptd[3];

static float ptdl, diffang, mindiffang;

static int countin;

static float vtv[3][3];

static float ang[3][2];

static float angtot[3];

static float triang[3];

static float vtvl[3];

static float fpointproj[3], fpointprojt[3];

static float dl[3];

static float ptvf[3], ptvft[3];

static float scp;

static bunnyears diffarr[10];
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static int countdiff=0;

static int check;

static int idxminvor;

countdiff=0;

dmin=10000000;

countin=0;

idxmin=-1;

static int okflag1, okflag2;

okflag1=okflag2=0;

if ((impflag==1) && (probimp==false))

printf("lost track!!!!!!\n");

static float mc=10000;

for(i=0; i<count; i++)

{

for(n2n=0; n2n<3; n2n++)

ptd[n2n]=pt[n2n]-tri[idcs[i].id].mid[n2n];

idcs[i].sc=ptd[0]*tri[idcs[i].id].nl[0]+ptd[1]*tri[idcs[i].id].nl[1]+ptd[2]*tri[idcs[i].id].nl[2];

ptdl=sqrt(ptd[0]*ptd[0]+ptd[1]*ptd[1]+ptd[2]*ptd[2]);

tempp[0]=ptd[1]*tri[idcs[i].id].nl[2]-ptd[2]*tri[idcs[i].id].nl[1];

tempp[1]=-ptd[0]*tri[idcs[i].id].nl[2]+ptd[2]*tri[idcs[i].id].nl[0];

tempp[2]=ptd[0]*tri[idcs[i].id].nl[1]-ptd[1]*tri[idcs[i].id].nl[0];

norm2norm[0]=tempp[1]*tri[idcs[i].id].nl[2]-tempp[2]*tri[idcs[i].id].nl[1];

norm2norm[1]=-tempp[0]*tri[idcs[i].id].nl[2]+tempp[2]*tri[idcs[i].id].nl[0];

norm2norm[2]=tempp[0]*tri[idcs[i].id].nl[1]-tempp[1]*tri[idcs[i].id].nl[0];

lengthn2n=sqrt(norm2norm[0]*norm2norm[0]+norm2norm[1]*norm2norm[1]+norm2norm[2]*norm2norm[2]);

for(n2n=0; n2n<3; n2n++)

norm2norm[n2n]/=lengthn2n;

pprojsc=ptd[0]*norm2norm[0]+ptd[1]*norm2norm[1]+ptd[2]*norm2norm[2];

for(n2n=0; n2n<3; n2n++)

pointproj[n2n]=tri[idcs[i].id].mid[n2n]+pprojsc*norm2norm[n2n];

for(vt=0;vt<3;vt++)

{

for(j=0; j<3; j++)

d[vt][j]=pointproj[j]-vert[tri[idcs[i].id].vidx[vt]][j];

}

for(j=0; j<3; j++)

dl[j]=sqrt(d[j][0]*d[j][0]+d[j][1]*d[j][1]+d[j][2]*d[j][2]);

for(j=0; j<3; j++)

{

for(n2n=0; n2n<3; n2n++)

d[j][n2n]/=dl[j];
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}

for(j=0; j<3; j++)

{

vtv[0][j]=vert[tri[idcs[i].id].vidx[1]][j]-vert[tri[idcs[i].id].vidx[0]][j];

vtv[1][j]=vert[tri[idcs[i].id].vidx[2]][j]-vert[tri[idcs[i].id].vidx[0]][j];

vtv[2][j]=vert[tri[idcs[i].id].vidx[2]][j]-vert[tri[idcs[i].id].vidx[1]][j];

}

for(j=0; j<3; j++)

vtvl[j]=sqrt(vtv[j][0]*vtv[j][0]+vtv[j][1]*vtv[j][1]+vtv[j][2]*vtv[j][2]);

for(j=0; j<3; j++)

{

for(n2n=0; n2n<3; n2n++)

vtv[j][n2n]/=vtvl[j];

}

sctot[0][0]=d[0][0]*vtv[0][0]+d[0][1]*vtv[0][1]+d[0][2]*vtv[0][2];

sctot[0][1]=d[0][0]*vtv[1][0]+d[0][1]*vtv[1][1]+d[0][2]*vtv[1][2];

sctot[1][0]=-d[1][0]*vtv[0][0]-d[1][1]*vtv[0][1]-d[1][2]*vtv[0][2];

sctot[1][1]=d[1][0]*vtv[2][0]+d[1][1]*vtv[2][1]+d[1][2]*vtv[2][2];

sctot[2][0]=-d[2][0]*vtv[1][0]-d[2][1]*vtv[1][1]-d[2][2]*vtv[1][2];

sctot[2][1]=-d[2][0]*vtv[2][0]-d[2][1]*vtv[2][1]-d[2][2]*vtv[2][2];

for(j=0; j<3; j++)

{

for(k=0; k<2; k++)

ang[j][k]=acos(sctot[j][k]);

angtot[j]=ang[j][0]+ang[j][1];

}

triang[0]=acos(vtv[0][0]*vtv[1][0]+vtv[0][1]*vtv[1][1]+vtv[0][2]*vtv[1][2]);

triang[1]=acos(vtv[0][0]*vtv[2][0]+vtv[0][1]*vtv[2][1]+vtv[0][2]*vtv[2][2]);

triang[2]=acos(vtv[1][0]*vtv[2][0]+vtv[1][1]*vtv[2][1]+vtv[1][2]*vtv[2][2]);

diffang=0.0;

for (j=0; j<3;j++)

diffang+=angtot[j];

if (i==0)

{

idxmin=1;

mindiffang=diffang;

}

check=0;

if (diffang<mindiffang)

{

if(probimphist==true)

{

if (tri[idxminvor].nl[0]*tri[idcs[i].id].nl[0]+tri[idxminvor].nl[1]*tri[idcs[i].id].nl[1]+tri[idxminvor].nl[2]*tri[idcs[i].id].nl[2]>0.0)



C Touch the Bunny Demo 101

check=1;

}

else

check=1;

if (check==1)

{

idxmin=i;

mindiffang=diffang;

ptvft[0]=ptd[0];

ptvft[1]=ptd[1];

ptvft[2]=ptd[2];

fpointprojt[0]=pointproj[0];

fpointprojt[1]=pointproj[1];

fpointprojt[2]=pointproj[2];

}

}

}

if (probimp==true)

probimphist=true;

if (countdiff>10)

printf("this is countdiff %d\n", countdiff);

ptvf[0]=ptvft[0];

ptvf[1]=ptvft[1];

ptvf[2]=ptvft[2];

fpointproj[0]=fpointprojt[0];

fpointproj[1]=fpointprojt[1];

fpointproj[2]=fpointprojt[2];

posball2[0]=tri[idcs[idxmin].id].mid[0];

posball2[1]=tri[idcs[idxmin].id].mid[1];

posball2[2]=tri[idcs[idxmin].id].mid[2];

numbertri=i;

fidx=false;

static float add[3];

static int inverted;

static float div;

static float amp=1.0;

static int counttouch;

scp=tri[idcs[idxmin].id].nl[0]*ptvf[0]+tri[idcs[idxmin].id].nl[1]*ptvf[1]+tri[idcs[idxmin].id].nl[2]*ptvf[2];

if((scp<0.0000)&&(probimp==true))

{

counttouch++;

if (counttouch==100)

counttouch=0;

div=4;

if (tri[idcs[idxmin].id].part[3]+tri[idcs[idxmin].id].part[4]+tri[idcs[idxmin].id].part[5]==0)
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div-=1;

if (tri[idcs[idxmin].id].part[6]+tri[idcs[idxmin].id].part[7]+tri[idcs[idxmin].id].part[8]==0)

div-=1;

for(i=0; i<3; i++)

{

bunny[i]=(-scp*tri[idcs[idxmin].id].nl[i]-

amp*scp*tri[tri[idcs[idxmin].id].part[0]].nl[i]-

amp*scp*tri[tri[idcs[idxmin].id].part[3]].nl[i]-

amp*scp*tri[tri[idcs[idxmin].id].part[6]].nl[i])/div;

add[i]=-scp*tri[idcs[idxmin].id].nl[i];

projcheat[i]=pt[i]+(0.001-scp)*tri[idcs[idxmin].id].nl[i];

penc=1;

}

}

else

{

add[i]=0.0;

penc=0;

bunny[0]=bunny[1]=bunny[2]=0.0;

gains.values[0].d=gains.values[1].d=gains.values[2].d=0.0;

for(i=0;i<3;i++)

projcheat[i]=pt[i];

}

for(i=0; i<count;i++)

{

idcsold[i].id=idcs[i].id;

idcsold[i].sc=idcs[i].sc;

}

countold=count;

static float sicflag=1.5;

float wall=5.0;

float wallscale=1.0;

penc2=0;

for(i=0; i<3; i++)

{

if (position.values[i]>wall)

{

edge[i]=wallscale*(wall-position.values[i]);

penc2=1;

}

else if(position.values[i]<-wall)

{

penc2=1;

edge[i]=wallscale*(-wall-position.values[i]);

}

}
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for(i=0; i<6;i++)

{

gains.values[i].p=0.0;

gains.values[i].d=0.0;

}

static float bunnyf[3];

static float scalebf[3];

for(i=0; i<3;i++)

scalebf[i]=200;

if(probimp==true)

{

srcpoint.setValue(bunny[0],bunny[1], bunny[2],1);

frotat.multVecMatrix(srcpoint, dstpoint);

dstpoint.getValue(bunnyf[0],bunnyf[1], bunnyf[2], w);

}

else

bunnyf[0]=bunnyf[1]=bunnyf[2]=0.0;

static float tsh2=5.0;

for (i=0; i<3; i++)

{

force[i]=edge[i]+scalebf[i]*bunnyf[i];

if (force[i]>tsh2)

force[i]=tsh2;

else if(force[i]<-tsh2)

force[i]=-tsh2;

despos.values[i]=(position.values[i]+2*force[i])/1000;

}

// Set the rotational gains

gains.values[3].p=gains.values[4].p=50.0;

gains.values[5].p=10.0;

gains.values[5].d=gains.values[3].d=gains.values[4].d=0.40;

gains.values[2].ff=4.8;

// Set translational gains

for(i=0;i<2; i++)

{

if(force[i]!=0.0)

{

gains.values[i].p=5000;

gains.values[i].d=30;

gains.values[4-i].d=0.6;

}

}

if(force[2]!=0.0)

{
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gains.values[2].p=10000;

gains.values[2].d=30;

}

idxmin=idxminold;

idxminvor=idcs[idxmin].id;

}

despos.values[3]+=balancefy;

despos.values[4]-=balancefx;

}

/************** mergesort2 **************/

void mergesort(int low, int high) {

int i = 0;

int length = high - low + 1;

int pivot = 0;

int merge1 = 0;

int merge2 = 0;

int merge21 = 0;

int merge22 = 0;

float working[length];

int tmptri[length];

if(low == high)

return;

pivot = (low + high) / 2;

mergesort(low, pivot);

mergesort(pivot + 1, high);

for(i = 0; i < length; i++)

{

working[i] = numbers[low + i].val;

tmptri[i]=numbers[low + i].idx;

}

merge1 = 0;

merge2 = pivot - low + 1;

merge21 = 0;

merge22 = pivot - low + 1;

for(i = 0; i < length; i++)

{

if(merge2 <= high - low)

if(merge1 <= pivot - low)

if(working[merge1] > working[merge2])

{

numbers[i + low].val = working[merge2++];
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numbers[low + i].idx=tmptri[merge22++];

}

else

{

numbers[i + low].val = working[merge1++];

numbers[low + i].idx=tmptri[merge21++];

}

else{

numbers[i + low].val = working[merge2++];

numbers[low + i].idx=tmptri[merge22++];

}

else

{

numbers[i + low].val = working[merge1++];

numbers[low + i].idx=tmptri[merge21++];

}

}

}

/****************************** searchpart ******************************/

void searchpart()

{

bool set=false;

NumTri2=69451;

int weird=0;

int countz=0;

int setcons=0;

int count2=0;

int mem=0;

int fok=0;

int code;

int a2, b2, zg, i, g,j,a,b;

for(i=0; i<NumTri2; i++)

{

zg=i;

if(tri[i].partc<=2)

{

countz=0;

for(g=i; g<NumTri2;g++)

{

if(tri[g].partc<=2);

{

if (g!=i)

{

for(j=0; j<3;j++)

{

fok=0;

if (tri[g].vidx[j]==tri[i].vidx[0])

{
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fok=1;

code=0;

}

if (tri[g].vidx[j]==tri[i].vidx[1])

{

fok=1;

code=1;

}

if (fok==1)

{

if(j==0)

{

a=1;

b=2;

}

if (j!=0)

{

a=3-j;

b=3-j-a;

}

count2=0;

a2=0;

b2=2;

if(code==0)

{

a2=1;

b2=2;

}

if(tri[g].vidx[a]==tri[i].vidx[a2])

{

set=true;

setcons=a2;

countz++;

mem=g;

}

else if (tri[g].vidx[b]==tri[i].vidx[a2])

{

set=true;

setcons=a2;

countz++;

mem=g;

}

else if (tri[g].vidx[a]==tri[i].vidx[b2])

{

set=true;

setcons=b2;

countz++;

mem=g;

}

else if(tri[g].vidx[b]==tri[i].vidx[b2])
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{

set=true;

setcons=b2;

countz++;

mem=g;

}

if(set==true)

{

if((tri[i].partc<=2) && (g!=tri[i].part[0])

&& (g!=tri[i].part[3]) && (g!=tri[i].part[6]))

{

tri[i].part[3*tri[i].partc]=g;

tri[i].part[3*tri[i].partc+1]=tri[i].vidx[code];

tri[i].part[3*tri[i].partc+2]=tri[i].vidx[setcons];

tri[i].partc++;

}

if((tri[g].partc<=2) && (i!=tri[g].part[0])

&& (i!=tri[g].part[3]) && (i!=tri[g].part[6]))

{

tri[g].part[tri[g].partc*3]=i;

tri[g].part[3*tri[g].partc+1]=tri[i].vidx[code];

tri[g].part[3*tri[g].partc+2]=tri[i].vidx[setcons];

tri[g].partc++;

}

if (tri[i].partc>2)

g=NumTri2-1;

set=false;

}

}

}

}

}

}

}

}

}

/*************************** calcnorm ******************************/

void calcnorm()

{

static int i, g, j;

static int ptr[2];

static float corrv2[3];

static float corrv1[2][3];

static float corrv11[2][3];

static float scalcorr[2];

static float newp[2][3];
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static float cut[2][3];

static float vec[3];

static float norm2[3];

static float scal1, scal2, lcorrv2, norml;

static int idxc=0;

static int sf, cng;

static int nofound=0;

static int NumbTri2=69451;

static int idxo, cwhile, cwi, nc;

static bool again;

static int pt1, pt2, sok1, sok2, naco, okco;

static float vec1[3], vec2[3], ang[4];

static int ctnz, cpb;

static int ok, innof;

again=true;

idxc=0;

sf=1;

for(i=0; i<3; i++)

{

vec1[i]=vert[tri[idxc].vidx[1]][i]-vert[tri[idxc].vidx[0]][i];

vec2[i]=vert[tri[idxc].vidx[2]][i]-vert[tri[idxc].vidx[0]][i];

}

norm2[0]=vec1[1]*vec2[2]-vec1[2]*vec2[1];

norm2[1]=-vec1[0]*vec2[2]+vec1[2]*vec2[0];

norm2[2]=vec1[0]*vec2[1]-vec1[1]*vec2[0];

norml=sqrt(norm2[0]*norm2[0]+norm2[1]*norm2[1]+norm2[2]*norm2[2]);

for(i=0;i<3;i++)

tri[idxc].nl[i]=norm2[i]/norml;

tri[idxc].nok=1;

idxo=idxc;

idxc=tri[idxc].part[0];

pt1=tri[idxo].part[1];

pt2=tri[idxo].part[2];

nofound=0;

do

{

innof=0;

if (nofound==1)

{

innof=1;

for (i=0; i<NumbTri2; i++)

{

if (tri[i].nok==1)

{

for (j=0; j<3; j++)

{
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idxo=i;

idxc=tri[i].part[3*j];

pt1=tri[i].part[3*j+1];

pt2=tri[i].part[3*j+2];

nofound=0;

j=3;

}

}

if(nofound==0)

i=NumbTri2;

}

}

if(nofound==1)

again=false;

}

if(again==true)

{

ptr[0]=tri[idxc].vidx[0]+tri[idxc].vidx[1]+tri[idxc].vidx[2]-pt1-pt2;

ptr[1]=tri[idxo].vidx[0]+tri[idxo].vidx[1]+tri[idxo].vidx[2]-pt1-pt2;

sok1=sok2=0;

for(i=0; i<3; i++)

{

if(tri[idxc].vidx[i]==ptr[0])

sok1=1;

if(tri[idxo].vidx[i]==ptr[1])

sok2=1;

}

for(i=0;i<3;i++)

corrv2[i]=vert[pt2][i]-vert[pt1][i];

lcorrv2=sqrt(corrv2[0]*corrv2[0]+corrv2[1]*corrv2[1]+corrv2[2]*corrv2[2]);

for(i=0;i<3;i++)

corrv2[i]/=lcorrv2;

for(i=0; i<3;i++)

{

corrv1[0][i]=vert[ptr[0]][i]-vert[pt1][i];

corrv1[1][i]=vert[ptr[1]][i]-vert[pt1][i];

}

for(j=0;j<2;j++)

{

scalcorr[j]=corrv1[j][0]*corrv2[0]+corrv1[j][1]*corrv2[1]+corrv1[j][2]*corrv2[2];

for(i=0; i<3;i++)

corrv11[j][i]=scalcorr[j]*corrv2[i];

}

for(j=0; j<2;j++)
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{

for(i=0; i<3;i++)

cut[j][i]=corrv1[j][i]-corrv11[j][i];

}

for(i=0; i<3; i++)

vec[i]=vert[ptr[0]][i]-vert[pt1][i];

norm2[0]=vec[1]*corrv2[2]-vec[2]*corrv2[1];

norm2[1]=-vec[0]*corrv2[2]+vec[2]*corrv2[0];

norm2[2]=vec[0]*corrv2[1]-vec[1]*corrv2[0];

norml=sqrt(norm2[0]*norm2[0]+norm2[1]*norm2[1]+norm2[2]*norm2[2]);

for(i=0;i<3;i++)

norm2[i]/=norml;

scal1=cut[0][0]*tri[idxo].nl[0]+cut[0][1]*tri[idxo].nl[1]+cut[0][2]*tri[idxo].nl[2];

scal2=cut[1][0]*norm2[0]+cut[1][1]*norm2[1]+cut[1][2]*norm2[2];

if(scal2>=0.0)

{

if(scal1<0.0)

{

for(i=0;i<3;i++)

norm2[i]=-norm2[i];

}

}

else if(scal2<0.0)

{

if(scal1>=0.0)

{

for(i=0;i<3;i++)

norm2[i]=-norm2[i];

}

}

for(i=0;i<3;i++)

tri[idxc].nl[i]=norm2[i];

ang[0]=atan2(tri[idxc].nl[2], tri[idxc].nl[1]);

ang[1]=atan2(tri[idxo].nl[2], tri[idxc].nl[1]);

ang[2]=atan2(cut[0][2], cut[0][1]);

ang[3]=atan2(cut[1][2], cut[1][1]);

for(i=0; i<4; i++)

{

if (ang[i]<0.0)

ang[i]=2*M_PI+ang[i];

}

if(ang[2]<ang[3])

{
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if ((ang[1]<=ang[3]) && (ang[1]>=ang[2]))

{

if ((ang[0]<=ang[3]) && (ang[0]>=ang[2]))

ok=1;

else

cpb++;

}

else if (((ang[1]<=ang[3]) && (ang[1]<=ang[2])) || ((ang[1]>=ang[3]) && (ang[1]>=ang[2])))

{

if ((ang[0]<=ang[3]) && (ang[0]<=ang[2]) || (ang[0]>=ang[3]) && (ang[0]>=ang[2]))

ok=1;

else

cpb++;

}

}

else

{

if ((ang[1]<=ang[2]) && (ang[1]>=ang[3]))

{

if ((ang[0]<=ang[2]) && (ang[0]>=ang[3]))

ok=1;

else

cpb++;

}

else if (((ang[1]<=ang[3]) && (ang[1]<=ang[2])) || ((ang[1]>=ang[3]) && (ang[1]>=ang[2])))

{

if (((ang[0]<=ang[3]) && (ang[0]<=ang[2])) || ((ang[0]>=ang[3]) && (ang[0]>=ang[2])))

ok=1;

else

cpb++;

}

}

tri[idxc].nok=1;

nofound=1;

for(i=0; i<3; i++)

{

if((tri[tri[idxc].part[3*i]].nok==0) && (tri[idxc].part[3*i]+tri[idxc].part[3*i+1]+tri[idxc].part[3*i+2]!=0))

{

idxo=idxc;

idxc=tri[idxc].part[3*i];

pt1=tri[idxo].part[3*i+1];

pt2=tri[idxo].part[3*i+2];

nofound=0;

i=3;

}

}

}

}while(again);

}
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