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Abstract—This paper presents an optimal shape trajectory robots, like Segway, have kinematic constraints restucti
planner for shape-accelerated underactuated balancing systemsheir direction of motion, whereas, single spherical-weée
which are destabilized by gravitational forces. These systems balancing robots, like ballbots, have omnidirectional iorot

have unactuated shape variables and fully actuated external . S .
variables. They also have the same number of actuated and that make them more suitable for operation in constrained

unactuated degrees of freedom. Their equations of motion result Spaces. In this paper, such omnidirectional balancingesyst
in nonholonomic acceleration/dynamic constraints, which relate are referred to ashape-accelerated underactuated balancing
the acceleration of external variables to the position, velocity and systemgdescribed in Sec. 1I-B).

acceleration of shape variables. This paper describes a procedure An interesting and troubling factor in control and plan-

to use the dynamic constraints for planning shape trajectories, . . .
which when tracked will result in optimal tracking of desired nlng of Sugh undgractuated SyStems. is the Constralnt. on
external con guration trajectories. Examples of planned optima  their dynamics by virtue of underactuation. These constsai
shape trajectories for the 3D ballbot system, which is a 3D are second-order nonholonomic [8] constraintg:; non-
omnidirectional wheeled inverted pendulum, are also presented. ntegrable acceleration/dynamic constraints. Thesetinss
restrict the family of trajectories that the con gurationan
follow. In control of balancing underactuated systems,alvhi

Underactuated mechanical systems are systems with fewes destabilized by gravitational forces, it is importaat t
independent control inputs than the degrees of freedom [fjaintain balance. Maintaining balance makes it dif cult to
Examples of underactuated systems can be found in roboticcurately track any desired con guration trajectories.
aerospace, marine and locomotive applications. Theseragst In this paper, we propose a planning procedure to ensure
are underactuated due to reasons like higher-order dynagood approximate tracking of desired trajectories for such
ics (e:g:; spacecraft, helicopter, underwater vehicles, exiblenderactuated balancing systems. For example, consider a
robots), actuator failurese(g:; a failed manipulator joint, 3D omnidirectional wheeled inverted pendulum robot like th
aircraft engine failure), and need for dynamic locomotioballbot [9]. We would like it to track some path on the oor,
platforms €:g:; Segway [2], ballbots [3]). A set of intention- which could be a desired path from some global motion
ally designed underactuated systems used in controlsrobseaglanning algorithm. The question to be answered herkds:
include Acrobot, Pendubot, Cart-Pole, Beam-Ball and Ragat can the wheel/ball be moved along this path while balancing
Pendulum [4]. the pendulum?The answer to this question is not trivial

In robotics, balancing (dynamically stable) mobile robotsecause of the dynamic coupling between the motion of the
form a special class of underactuated systems. They incluzil and the pendulum. Now, consider a balancing controller
wheeled robots like Segway [2], ballbots [3] and legged teboas in [9], which ensures accurate tracking of desired lean
like BigDog [5], MABEL [6]. Balancing robots will play a trajectories for the pendulum, then the question, statedeb
vital role in realizing the dream of placing robot workers ircan be reformulated asiow can the lean trajectories of the
human environments. Unlike statically stable mobile rebotpendulum be chosen so that the ball moves along the desired
balancing (dynamically stable) mobile robots car): {e tall path? This is the question that is addressed in this paper.
and skinny with high centers of gravityji Y have smaller In order to answer the above question, we should look
footprints, and i{i ) accelerate or decelerate quickly [3]. Theynto the nonlinear dynamics of the system. Given an accurate
can also be very effective mobile manipulators [7] witimodel, there have been a variety of controllers designed
the ability to maintain postural stability, generate faraen in nonlinear control literature, which use partial feedbac
external objects and withstand greater impact forces. & hdearization [10], to ensure approximate output trackihd)],
characteristics make them ideal for navigation and opmrati[12]. But in real robots, we have to deal with model un-
in cluttered human environments. Two-wheeled balancimgrtainties, higher-order dynamics, nonlinear frictidfeets

I. INTRODUCTION



and disturbances. Controllers that cancel out nonlinganse variables that do not appear in the inertia matrix are called
assuming their accurate knowledge, can fail miserably external variableqd), i:e:, @Mq)=@g=0.

real robots. Though the model in-hand may not be accurateSince the inertia matrix is independent of the external
it can often provide some useful information such as thariables, the kinetic energ (q;q) = %qu (g)q is also
dynamic constraints. In [13], an of ine trajectory plangin independent of the external variablés;, @Kq;9)=@g=0.
procedure that produces a class of parametric trajectorlasthis case, the Lagrangian system is said to have kinetic
for the unactuated shape variables to reach static desisgthmetry [4].

con gurations using the dynamic constraint was presented.Eg. 2 can be re-written as:

This planning procedure combined with 2-DOF control, an

inner bala;cm% control loop and ian our'iertralcklntc;; conmoblh My (G) Mys () . hy (q:Q) _ Fo(@) @)
[9], proved to be very sgcce§sfu on t e.rga robot. But,g & Mo (k) Mes(G) @& he(q:Q) Fo(q)

are a few drawbacks with this approach. if was not easily

generalizable to arbitrary motionsi X it was computationally where,h(q;a) = [ hx(q;Q); hs(q;a)]" is:

expensive; andii{ ) it was an of ine procedure.

In this paper, we p.r.esent a generqlized gpproach to generatqa,x(q;q) _ Cu(Q Ces(@a) a . Gy(Q) @
shape_z _trajectorlesa(g., lean angle trajectories in the ballbot), hs(q:0) Co(q:0) Css(q:Q) G Gs(Q)
exploiting the structure of dynamic constraints for shape-
accelerated underactuated balancing systems, which whedhe underactuated systems can be classied based on
tracked will result in optimal tracking of the desired matio Whether the shape variableg are fully actuated, partially
The advantages of this planning procedure &t €an track actuated or unactuated and based on the presence or lack of
any desired trajectories satisfying certain conditiorisogssed NPut couplings in the force matrik (q) [4].

"1 SE.}C.‘ lll-B); @) it is computationally !ess expensive; anqS_ Shape-Accelerated Underactuated Balancing Systems
(iii ) it is fast and can be performed online on the real robot. i ) )

This paper is organized as follows: Sec. Il presents the!n this paper, we are interested in shape-accelerated un-
properties of shape-accelerated underactuated balasyig deractuated balancing systems, which form_a special (;Iﬁass 0
tems: Sec. Il discusses the special structure of the dymarHideractuated systems satisfying the following propertie
constraint for such systems and explains the shape trajecto () The shape variables are unactuated and there is no input
planning procedure that ensures optimal tracking of desire  coupling,e:g; Fx(q) = In andFs(q) = 0. A variety of

external con guration trajectories; Sec. IV presents thguits underactuated systems can be transformedrintiput
of the optimal shape trajectory planner for a 3D ballbot niode ~ coupling form with global change of coordinates [4].
and nally, Sec. VI presents the conclusion. (i) There are equal number of actuated and unactuated
variables,i:e:, dim(gc) = dim(g) = m and hence
Il. UNDERACTUATED MECHANICAL SYSTEMS n=2m.
The forced Euler-Lagrange equations of motion for a me-  In [4], underactuated systems satisfying propertiesiifi)-(
chanical system are: are referred to a€lass lla underactuated systems.
d@ a (iii) The potential ener_gy\_/(q)_ is independent ofy, i:e_:,
at @ @: F(9 ; 1) @\(q):@)q: 0. This |mplles thatG(q) = @\(q):@qs.
also independent dafy. Since both kinetic and potential
where, g 2 R" is the con guration vector,L (g;q) = energies are independentaf, the Lagrangiath. is also
K(g;a) V(g) is the Lagrangian with kinetic energit independent ofy, i:e:, L is symmetric w.r.t.g.
and potential energy, 2 R™ is the control input and (iv) M (Gs) is constantj:e:, @My (0)=@g= 0.
F(g 2 R"™ ™ is the force matrix. (V) M () has differentially symmetric rows,i:e:,
A mechanical system satisfying Eq. 1 is said to be an @Mx(Os):@iQ = @M; (6)=@¢g where Méx (%)
underactuated systeffl] if m < n, i:e:, there are fewer refers to thei™ row of Mg ().
independent control inputs than con guration variables. Properties (iii)-(v) makeh(q;q) independent of botla
Eg. 1 for an underactuated system can be written in matrix  andg,.
form as follows: (vi) The system has locally strong inertial coupling [iL§:,
. _ ) rank(Msx(g)) = n m = m for all q in the neigh-
M(@g+ Claaa+ G = F(a); ) borhood of the origin, where origin is the unstable equi-
where,M (g) 2 R" " is the inertia matrixC(qg;q) 2 R" " is librium. A system satisfying the (local) strong inertial
the matrix of Coriolis and centrifugal terms a@qq) 2 R" ! coupling is also known amiternal/External Convertible
is the vector of gravitational forces. Systen{12].
) (Vi) @G(gs)=@46 0 atgs =0 and is invertible.
A. External and Shape Variables (Vi) @M (06) 1Gs(0))=@¢6 0 atg = 0 and is invert-
The con guration variables that appear in the inertia nxatri ible.

are calledshape variableg(qs), whereas, the con guration The signi cance of properties (vi)-(viii) will be explaie



in Sec. Ill, where they are used for the optimal shagato rst-order nonholonomic constraints. This is ensuitad

trajectory planner design. the fact that the gravitational vect@(qs) is not a constant and
(ix) rank(Mss(gs)) = m;ie;; Mgs(gs) * exists. the inertia matrixM (qs) is dependent on the unactuated shape
(X) @Mss(gs) 'Gs(0s))=@g6 0 atgs = 0 and is invert- variablesgs. For a detailed discussion of these conditions, refer
ible. to [14].
(Xi) Mgs(0s) Mgy (0s) 80 atgs = 0. Due to the properties listed in Sec. II-B, the dynamic

Properties (ix)-(xi) ensure that the Jacobian lineararati constraint equations for shape-accelerated underadtiae
(A;B) of the system (Eq. 3) at origin is controllableancing systems are independent of the position and velocity
and its zero dynamics [10] is unstable at the origirof external variables. This special structure relates tbe a
According to [12], an underactuated system that satis eleration of external variables to the position, veloctyd
properties (ix)-(xi) is called dalance systerand in this acceleration of shape variables. In this section, we wiirapt
paper, we will refer to it as dalancing system at understanding this relationship.
The shape-accelerated underactuated balancing systéims wi-et's consider the function
have equations of motion of the form:

Aok:e) = ( 0;0;0;8)
M Mys (%) & + hx (Gs; ) - . (5) = Msx ()8 + hs(s; 0)
Moc(d) Mss(cs) &  hs(gsiz) 0 = Mo (@8 + Go(q): )
where, It follows from Eq. 8 that
he(ds;%) _ O Cus(GiG) G o .
ho(cki) ~ O Ca(thi) & & Go(@) = © o 4) = 0: (10)

We can see from Eq. 5 that the equations of motion of theB¥ implicit function theorem, if both@ -@gand @ =@
systems are such that any non-zero shape con guration vl (Gs; &) = (0;0) exist and are invertible, then there exists
result in acceleration of the external variables and in tuf invertible map : ¢ ! e in the neighborhood of the
acceleration of the entire system, hence the nahape- Origin such that %gs; (&)) =0 and A *(e);e) =0.

accelerated underactuated balancing systems From Eq. 9, we get
Some examples of shape-accelerated underactuated bal- @° @G(x)
ancing systems are planar and 3D cart-pole system with — = ; (12)
unactuated lean angles, planar wheeled inverted pendulum @g (s ;& )=(0 ;0) @g 05 =0
(e.g. Segway [2] in a plane) and 3D omnidirectional wheeled @°
inverted pendulum (e.g. the ballbot [13, 9]). @ = Msx () : (12)
(9s:8)=(0 :0) 0s=0
. DYNAMIC CONSTRAINT-BASED OPTIMAL SHAPE From properties (vi) and (vii) in Sec. II-B, we can see that
TRAJECTORYPLANNER the Jacobians in both Eq. 11 and Eq. 12 exist and are inwertibl

In this paper, our objective is to plan shape trajectorieand hence, there exists an invertible mapgs ! e in the
which when tracked will result in optimal tracking of deslire neighborhood of the origin such that(gs; ( g)) = 0 and
external con guration trajectories. The planning procedu % *(ey);e&) = 0. can be derived directly from Eq. 9
presented in this section exploits the special structure afid Eg. 10 as follows:
dynamic constraints of shape-accelerated underactuated b
ancing systems described in Sec. II-B. So, let's rst look at

— 1
the dynamic constraint, its structure and the informatioat t & = Msx (G6) “Gs (%)
it provides. = (%) (13)
A. Dynamic Constraint in the neighborhood of the origin.

The second set aih equations of motion associated with Jacobian linearization of Eq. 13 w.rds atds =0 gives

the unactuated shape variables in Eq. 5 given by

o @ _ @Mx(%) *Gs(a))
Msx (Gs) & + Mss(Gs)€ + hs(G;G) =0 @) @4 o - @9 0.0
can be written as: = K gs; (14)
(00 8;8)=0: (8) We know thatk gs is invertible by property (viii) in Sec. 1I-B.

. This implies, we have a linear m =(KQ2) 1 such that
Eg. 7 and Eq. 8 are calleskcond-order nonholonomic con- P a0q, = (Kq.)

straints nonholonomic acceleration constrainter dynamic
constraints because there exists no function such that
°= ( O %;€&). The dynamic constraint equations arand
not even partially integrablg;e:, they cannot be converted °(Kgqu;e|x) =0 (16)

&= K &; (15)



in the neighborhood of the origin. where, e@(t) = (K, #0(t); K, G5(1); Kq, GL(L). It is to
We can see tha#y is a constant if and only it is a be noted that the parameter spacen’&dimensional and any
constant. In order for the external con guration of the syst optimization algorithm that solves a nonlinear least-sgsia
in Eg. 5 to have a constant desired acceleragfarthe system problem can be used.
should stick to a constant shape con guration givendpy= For a desired constant acceleration trajectéty, = Kgx
Kg of. ensures optimality. For any genermfl(t), Kq, = K3 may
Whenej is not constantgs andes are non-zero. Let's take not necessarily ensure optimality but will act as a goodahit
a=(0;%;8&) andb= g, and then Eq. 8 can be written asgguess for the optimization process.
( a;b) =0. Taking the Jacobian w.rbhat (a; b = (0;0), we As one can see, the optimal shape trajectory planner de-

get scribed above ensures thef(t) approximately trackeg (t)
but does not ensure thgf(t) approximately tracksg(t) or

@ a;bh = Mo () (17) a (t) approximately tracksg(t). This can be ensured only if
@b (b= 0) =0 the initial conditions for the external variables are mie;,

— ~d — ~d
From property (vi) in Sec. II-B, we can see that Eq. 17 exisfkp(g_) R qE(?) andqf(r(])) B gxéo) b . d
and is invertible. Hence, by implicit function theorem, rine lven below are the conditions to be met in order to use

exists a map °: a! bsuch that( a; %)) = 0. The map the shape trajectory planner described above to tgd¢R:
0js not invertible since@ a;bh=@aat (a;b) = (0;0) exists () ok (t) must at least be aflassC?, i:e:, gf(t) and f(t)

but is not invertible. exist and are continuous. Kl(t) does not exist then,
We can see that in order to track a non-constant, time- the planned shaped trajectog§(t) that is proportional

d . .
varying el(t), there is no function that mapsd(t) to tcc)jqx(t_) will not exist as well. .
(cf(t); € (t); #¢(t)) such that the dynamic constraints in Eq. 8(i)) &(t) is preferred to be ofclass C%, i:e:, rst four
are satis ed. In the following subsection, we propose an derivatives exist and are continuous so as to ensure the

optimal planner that ensures approximate trackinglgf). existence off (t), g (t), e§(t) that depend on them. This
condition also avoids discontinuities in the planned shape

B. Optimal Shape Trajectory Planner trajectories and its rst two derivatives.

In underactuated balancing systems, we are often interesfdi) Initial conditions for the external variables are mee:,
in tracking desired trajectories for the external con dioa ®(0) = of(0) andgf(0) = of(0). The desired position
variables without losing balance. Shape-acceleratedrande trajectorycff(t) can be tracked by approximate tracking

tuated balancing systems in Sec. II-B have constraints on Of & (t) only if the system starts at the correct initial
the acceleration of these external variables w.rt. thepsha  Position and velocity for the external variables.

variables' position, velocity and acceleration as givetowe IV. EXAMPLE: 3D BALLBOT MODEL
o = Mo (G) 1(Mss(Gs)8s + hs(Cs; Gs)) As an example, we present here the results of the optimal
- U0 G &) (18) shape trajectory planner described in Sec. IlI-B for a 3D

ballbot model, which is a 3D omnidirectional wheeled ineert
So, for a desired acceleration trajectory for the externpéndulum. The ballbot (Fig. &) is modeled as a rigid
con guration eZ(t), we would like to plan shape con gura- cylindrical body on top of a rigid spherical wheel/ball with
tion trajectorie P (t); a2 (t); #8(t)), which when tracked will the following assumptions:i) there is no slip between the
result in ef(t) (from Eq. 18) such thaef(t) = f(t). But, ball and the oor, andi{) there is no yaw/spinning motion
we have seen that® * : e (t) ! (os(t);as(t); &(t)) that for both the body and the balte:, they have two degrees-of-
satises ( © Y(ex(t));ex(t)) = O does not exist. Hence, freedom each. It is to be noted that the results presented her
we propose to nd a map : «qd(t) ! (qQ(t); d(t);8E(t)) are that of simulation and are not experimental results.

such thatkeP(t)  ef(t)k3 is minimized. Here,e(t) = The forced Euler-Lagrange equations of motion are given
AR (t); B (t); &R (1)). by Eg. 1 withgs corresponding to the con guration of the
Inspired from Eq. 15, we propose to use a linear idgp :  ball/wheel, andgs corresponding to the con guration of the
el ! o such that body (Euler angles). Hereyx =[ «; y]" andgs =[ «; y]".
Planar versions of the ball and body con gurations are shown
Dy — drer. in Fig. 10).
(1) = Ko a(1); (19) The ball con gurations, x and y, are chosen such that
B (1) = Kg, G5(1); (20) the linear position of the ball/lwheel (with radiug on the
8 (t) = Ky, 'qg(t); (21) XY ground plane is given by, = r x andyy = r y. This

) ) produces input coupling iR (q):
The shape trajectory planning procedure can now be formu- 2
lated as an optimization problem, where the elements gf 1 2

are determined with the objective of minimizing the funatio F(g) = g 8 1 Z : (23)
J = keP(t) el(t)k3; (22) 1 0

3



1) Straight Line Motion: Let's start with the simplest of
trajectories that involve moving along a straight line betw
static con gurations,i:e:, starting from rest at one point on
the oor and coming to rest at another point on the oor. The
desiredx,, (t) andyy (t) are chosen to be noni®{ degree)
polynomials int so that their rst four derivatives satisfy the

@

Fig. 1. (@) The ballbot balancing,bj Planar ballbot model with ball and
body con gurations shown.

(b)

By global change of coordinates = y and 9 =
y * x, the equations of motion with the new con guration

vectord®=[ 2; 9, x; yI" has no input coupling ifF %c?):

Linear Y Position (m)
-

boundary conditions.

Desired

= == == Planned

0 : .
2 10 3 0 1 2
0 1 Linear X Position (m)
Fa=§ 0 L (24)
0 0 Fig. 2. Straight Line Motion - Linear XY (This gure is besteived in
color.)
The new forced Euler-Lagrange equations are:
MY+ CA )+ GAd) = FAD : (25)

It is to be noted that the underactuated system in Eq. 25
satis es all the properties of shape-accelerated undesied
systems and balancing systems listed in Sec. 1I-B. The expre
sions forM % C% G° are omitted here due to lack of space.
The last two equations of motion in Eq. 25 form the

dynamic constraint equations of the system and these eqlRere the coef cientsa:
1

xe .
Xw (1) = at';

i=0

xe .
Yw(t) = bt';

i=0

(26)

tions are used for the optimal shape trajectory planner f’ﬁle initial and nal desired con gurations

Sec. llI-B. The optimization algorithm used here is Levagbe
Marquardt algorithm (LMA), which is a widely used tool for
minimization problems in least-squares curve tting andiho
linear programming. The dynamic equations were simulated
in MATLAB and the optimization was implemented using
MATLAB's Isgnonlin function. Some of the planning results
are presented below.

A. Results of Optimal Shape Trajectory Planning

This section presents a variety of desivagl(t) andy, (t)
that satisfy the conditions in Sec. IlI-B and the correspogd
planned optimal shape trajectories(t) and §(t), which
should be tracked to achieve them. It is important to note tha
the desired trajectorieg,, (t) andy,, (t), are trajectories of the
center of the ball and not trajectories of the system's gerite
gravity. On a at oor, these trajectories match the trajgees
of the ball's contact point with the oor.

xXT

B
y
-
1 N
\
— V4 \
A N
2 ’
0
2 ' ‘
< \ ’/
\
1 ._v
2 .
0 5 10
Time (s)

Fig. 3. Straight Line Motion - Planned Shape Trajectories

s and b's are determined based on



In Fig. 2, we can see the planned XY motion approximatetp be noted that the results presented here are observed only

tracking the desired XY motion. The planned shape trajeetor when the appropriate initial conditions are met. The tnagki
that produce such a motion are shown in Fig. 3. The trajecteror statistics are: RMSE = 4.38 # m and Maximum Error
ries for the planned XY motion are obtained from Eq. 18. The 5.6x10 4 m.

tracking error statistics are: RMSE = 0.0147 m and Maximum

Error = 0.0238 m.

6 -
Desired
5 4 | = == == Planned
Desired
4 = == == Planned g 5 |
=
= S
£ ‘@
= 3
c g 0
:8 >
(%2} [
g 2 § 2 |
> 3
g
g 1 4]
—
01 6 : : : : : .
6 4 2 0 2 4 6
1 Linear X Position (m)
3 2 1 0 1 2 3
Linear X Position (m) Fig. 6. Figure-8 Motion - Linear XY (This gure is best viewed color.)

Fig. 4. Circular Motion - Linear XY (This gure is best vieweid color.) 3) Figure8 Path: Here, we would like the robot to move
along a gure8 path on the oor. The desirexl, (t) andy,, (t)
2) Circular Motion: Here, we would like the robot to move are:

along a circular path on the oor. The desireg (t) andyy, (t) X (1) = Ay sin(l 41):
w - X = X l

e ()= Ay sin(l y1) (28)
. Yw(t) = sin(! yt);
Xw(h) = Rsin(lt ) here,A, = 4 WI y20 dy/ A, =4 d!
_ ] where,Ay =4 m, !, = =20rad/s,Ay =4 m, and! y =
yw(t) = R(1 cos(t)); @7 _ 10 rad/s.
where,R =2 m and! = =10rad/s.
2 —_—
2 —_—
1
Y g
g o 0
= (@)
2 9 =
c
< 1 4
1 4
2 : : : .
2 , , , , 0 10 20 30 40
0 5 10 15 20 Time (s)

Time (s)
Fig. 7. Figure-8 Motion - Planned Shape Trajectories

Fig. 5. Circular Motion - Planned Shape Trajectories
In Fig. 6, we can see the planned XY motion approximately

In Fig. 4, we can see the planned XY motion approximatetyacking the desired XY motion. The planned shape trajextor
tracking the desired XY motion. The planned shape trajeztor that produce such a motion are shown in Fig. 7. It is to be

that produce such a motion are shown in Fig. 5. The trajectoeted that the results presented here are observed only when

ries for the planned XY motion are obtained from Eq. 18. It ihe appropriate initial conditions are met. The trajee®iior



the planned XY motion are obtained from Eq. 18. The tracking In Fig. 8, we can see the planned XY motion approximately

error statistics are: RMSE = 0.0105 m and Maximum Error tracking the desired XY motion. The planned shape trajextor

0.0177 m. that produce such a motion are shown in Fig. 9. The trajecto-
ries for the planned XY motion are obtained from Eq. 18. The
tracking error statistics are: RMSE = 0.0167 m and Maximum

6, Error = 0.0286 m.
Desired
5 | = = = Planned B. Real-Time Planning

For all the results presented in Sec. IV-A, the optimization
4] tolerance values for both the residual norm and parameter
values were set to< 10 4. On a standard Intel Core-2
Duo processor, the optimization implementation in MATLAB
converges irc 1 second. This ensures that the optimal shape
trajectory planner presented in this paper can be used d&br re

2 1 time planning on the robot.

Linear Y Position (m)
w

V. BALANCING AND TRACKING CONTROL

1
The entire planning procedure presented in this paper as-
0 : , , , , , sumes that there exists a balancing controller, similah® t
3 2 1 0 1 2 3 one in [9], which has good shape trajectory tracking perfor-

Linear X Position (m) mance. Given the balancing controller and the optimal shape
trajectory planner, we can achieve good approximate tnacki
Fig. 8. Join-Circle-Leave Motion - Linear XY (This gure iseist viewed of the desired external con guration trajectories. Butstto
in color.) be noted that this tracking is open-loop and with wrong ahiti
conditions, we have no way to ensure approximate tracking of
4) Join-Circle-Leave MotionThe tracking of a circle, sine the desired external con guration trajectories. Moreovetile
wave and gure8 paths require that the appropriate initiatesting on the real robot, modeling uncertainties, unnestlel
conditions are met. But in reality, we would like to start agiynamics, nonlinear friction effects and noise may prevent
any random initial con guration and track a particular patijood approximate tracking. Hence, we should have an externa

on the oor. Here, we present the result of starting fronyajectory tracking controller, similar to the one in [13f
rest, joining a circular path at a desired con guration, mgk ensure better tracking.

1.5 revolutions, leaving the circular path at a diametlycal
opposite point and coming to rest. This motion consists of 3
different trajectories fused together. Tjmwning andleaving
trajectories are nonid" degree) polynomials that satisfy the
initial and nal con gurations required to join and leaveeh
circular path respectively. The nonic polynomials ensinat t
the rst four derivatives of the fused trajectories are ¢onbus
and not just piecewise continuous.

q - Shape-Acceleratgd |
Balancing| t | ynderactuated )
Controller Balancing Systenfs 7> %

Tracking ‘ C) Pl q’
Controller

[
X

Optimal Shape
Trajectory Plannefr™

Fig. 10. Control Architecture

We propose to follow [13] in using the control architecture
shown in Fig. 10 for good approximate tracking of desired
external con guration trajectoriesy{) on the real robot. The

Angle (deg)
o

1 balancing controller tracks the desired shape trajectdgd),
A g A4 . .
which are a sum of plannedg) and compensatiorgf) shape
2 trajectories. The planned shape trajectories are giverhéy t
0 10 20 30 40 50 60 optimal shape trajectory planner, whereas, the compemsati
Time (s) shape trajectories are provided by the tracking controller

which tries to compensate for the deviation of the external
Fig. 9. Join-Circle-Leave Motion - Planned Shape Trajeetor con guration trajectories from the desired ones.



In Fig. 11, we show the result of the control architecturaith the optimal shape planner can ensure better trackiranwh
in Fig. 10 tracking the external con guration trajectorieshe initial conditions are not met.

corresponding to a circular motion starting with zero aditi

In the 3D ballbot example, we have seen that given

conditions, i:e:; there is no initial linear velocity in the x (x4 (t);yd(t)) 2 C*, we can use the optimal shape trajectory
direction, as in Fig. 4. We can see that the motion asymplanner to obtain the desired shape trajectories, whichnwhe
totically converges to the circular motion, which shows th&acked will result in the desired motion. In a general motio

effectiveness of the tracking controller in compensating fplanning setting, any standard path planning algorithmAik

the errors due to wrong initial conditions.

can be used to obtain a desireq, (S); yw (S)) path. In order to
use the optimal shape trajectory planner discussed in &gismp
as a tool for overall motion planning, we have to parametrize
this path in time. We propose that usingnic splineswhich

5 .
Desired ensure that the rst four derivatives for the overall trajey
4 - = = Actual will be continuous throughout its domain, will help us acieie
] this goal. Future work will include experimental testing of
= the planned shape trajectories presented here and desan of
= 3 global motion planner that provides desired external con g
) ration trajectories for the optimal shape trajectory pmn
[0}
o
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